Math, asked by prajwolkjr2004, 11 months ago


3x {}^{2}  - 4 \sqrt{3x}  + 4 = 0

Answers

Answered by CharmingPrince
11

\huge{ \green{ \mathfrak{ \underline{Question}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

■☆Factorize:\; 3x {}^{2} - 4 \sqrt{3}x + 4 = 0☆■

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{ \green{ \mathfrak{ \underline{Answer}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\boxed{\red{\bold{Solving \: by \: splitting\: terms:}}}

3x^2 - 4\sqrt{3}x +4 = 0

3x^2 - 2\sqrt{3}x -2\sqrt{3}x + 4 = 0

\blue{\sqrt{3}x(\sqrt{3}x-2) -2(\sqrt{3}x - 2)} = 0

\boxed{\red{\bold{By \: grouping \: method:}}}

\purple{(\sqrt{3}x -2)(\sqrt{3}x - 2)=0}

\boxed{\red{\bold{A \: trick\: used:}}}

■☆Just divide the product to be seen by the root value and then you can simply factorize it. ☆■

■☆For example , in this case , the product was 12 ; and the root is of 3 , so dividing the product by 3 , you get 4 . This means that sum is 4 , as coefficient of √3 is 4 , and product is also 4 . Thus it is 2 . and thats how I factorized it as 2√3☆■

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Similar questions