Math, asked by madhuri33354, 10 months ago


3x {}^{2}  + x - 1 \div x + 1

Answers

Answered by luk3004
0

1 result(s) found

x

3x  

3

+x  

2

+x−1

​  

 

See steps

Step by Step Solution:

More Icon

STEP

1

:

           1

Simplify   —

           x

Equation at the end of step

1

:

                       1      

 (((3 • (x2)) +  x) -  —) +  1

                       x      

STEP  

2

:

Equation at the end of step

2

:

                1      

 ((3x2 +  x) -  —) +  1

                x      

STEP

3

:

Rewriting the whole as an Equivalent Fraction

3.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  x  as the denominator :

               3x2 + x     (3x2 + x) • x

    3x2 + x =  ———————  =  —————————————

                  1              x      

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

STEP

4

:

Pulling out like terms

4.1     Pull out like factors :

  3x2 + x  =   x • (3x + 1)  

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

x • (3x+1) • x - (1)     3x3 + x2 - 1

————————————————————  =  ————————————

         x                    x      

Equation at the end of step

4

:

 (3x3 + x2 - 1)    

 —————————————— +  1

       x            

STEP

5

:

Rewriting the whole as an Equivalent Fraction

5.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  x  as the denominator :

        1     1 • x

   1 =  —  =  —————

        1       x  

Polynomial Roots Calculator :

5.2    Find roots (zeroes) of :       F(x) = 3x3 + x2 - 1

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  3  and the Trailing Constant is  -1.

The factor(s) are:

of the Leading Coefficient :  1,3

of the Trailing Constant :  1

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -3.00      

     -1       3        -0.33        -1.00      

     1       1        1.00        3.00      

     1       3        0.33        -0.78      

Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

5.3       Adding up the two equivalent fractions

(3x3+x2-1) + x     3x3 + x2 + x - 1

——————————————  =  ————————————————

      x                   x        

Checking for a perfect cube :

5.4    3x3 + x2 + x - 1  is not a perfect cube

Trying to factor by pulling out :

5.5      Factoring:  3x3 + x2 + x - 1  

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x - 1  

Group 2:  3x3 + x2  

Pull out from each group separately :

Group 1:   (x - 1) • (1)

Group 2:   (3x + 1) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

5.6    Find roots (zeroes) of :       F(x) = 3x3 + x2 + x - 1

    See theory in step 5.2

In this case, the Leading Coefficient is  3  and the Trailing Constant is  -1.

The factor(s) are:

of the Leading Coefficient :  1,3

of the Trailing Constant :  1

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -4.00      

     -1       3        -0.33        -1.33      

     1       1        1.00        4.00      

     1       3        0.33        -0.44      

Polynomial Roots Calculator found no rational roots

Final result :

 3x3 + x2 + x - 1

 ————————————————

        x        

Similar questions