Math, asked by selinapatel2009, 4 months ago


3x -  \frac{1}{4}   = 11 \\ find \: x \: solve \: with \: showing \\the \: steps  \\

Answers

Answered by Mister360
5

Step-by-step explanation:

\qquad\quad\sf{:}\longrightarrow 3x-\dfrac{1}{4}=11

  • Add the left side.

\qquad\quad\sf{:}\longrightarrow \dfrac{12x-1}{4}=11

  • use cross multiplication method.

\qquad\quad\sf{:}\longrightarrow 12x-1=44

\qquad\quad\sf{:}\longrightarrow 12x=44+1

\qquad\quad\sf{:}\longrightarrow 12x=45

\qquad\quad\sf{:}\longrightarrow x=\dfrac{45}{12}

\qquad\quad\sf{:}\longrightarrow x=3.7

Answered by mathdude500
2

\large\underline\blue{\bold{Given\:Question - }}

 \bf \: Solve \: for \: x :    \: 3x - \dfrac{1}{4} = 11

\large\underline\purple{\bold{Solution :-  }}

\rm :\implies\:3x - \dfrac{1}{4} = 11

\rm :\implies\:3x = 11 + \dfrac{1}{4}

\rm :\implies\:3x = \dfrac{44 + 1}{4}

\rm :\implies\:3x = \dfrac{45}{4}

\rm :\implies\: \boxed{ \red{ \bf \: x = \dfrac{15}{4} }}

Verification

 \bigstar \: \bf  \: Consider \: LHS

\rm :\implies\:3x - \dfrac{1}{4}

On substituting the value of x, we get

\rm :\implies\:3 \times \dfrac{15}{4}  - \dfrac{1}{4}

\rm :\implies\:\dfrac{45}{4}  - \dfrac{1}{4}

\rm :\implies\:\dfrac{45 - 1}{4}

\rm :\implies\:\dfrac{44}{4}

\rm :\implies\:11

\bf :\implies\: =  \: RHS

\large{\boxed{\boxed{\bf{Hence, verified}}}}

Similar questions