Math, asked by rk0158159, 6 months ago

-
4 - 11x = 3x {}^{2}

Answers

Answered by Anonymous
6

Solution:-

Method 1

=> We have equation

 \rm \implies3 {x}^{2}  + 11x - 4 = 0

Splitting into middle term

 \rm \implies3 {x}^{2}  + 12x - x - 4

 \rm \implies3x(x + 4) - 1(x + 4) = 0

 \rm \implies(3x - 1)(x + 4) = 0

 \rm \implies \: 3x = 1 \:  \: and \: x =  - 4

 \rm \implies \: x =  \dfrac{1}{3}  \: and \: x =  - 4

Method 2 by quadratic formula

 \rm \implies \: x =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

equation is

\rm \implies3 {x}^{2}  + 11x - 4 = 0

So compare with

 \rm \implies \: a {x}^{2}  + bx + c = 0

So we get

 \rm \implies \: a = 3 \: , \: b = 11 \:  \: and \: c =  - 4

Put the value on formula

\rm \implies \: x =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

 \rm \implies \: x =  \dfrac{ - 11 \pm \sqrt{ {11}^{2} - 4 \times 3 \times  - 4 } }{2 \times 3}

 \rm \implies \: x =  \dfrac{ - 11 \pm \sqrt{121 +48} }{6}

 \rm \implies \: x =  \dfrac{ - 11 +  \sqrt{169} }{6}  \:  \: and \: x =  \dfrac{ - 11 -  \sqrt{169} }{6}

 \rm \implies \: x =  \dfrac{ - 11 + 13}{6}  \: and \: x =  \dfrac{ - 11 - 13}{6}

 \rm \implies \: x =  \dfrac{2}{6}  \:  \: and \:  \: x =  \dfrac{ - 24}{6}

 \rm \implies \: x =  \dfrac{1}{3}  \: and \: x =   - 4

Answered by vishruthareddy
0
ANSWER:

=>3x^2+11x-4=0

Hope it helps you!

Pls do mark me as brainlist
Similar questions