![4 + 3 \sqrt{5} \div 4 - 3 \sqrt{5 } = a + b \sqrt{5} 4 + 3 \sqrt{5} \div 4 - 3 \sqrt{5 } = a + b \sqrt{5}](https://tex.z-dn.net/?f=4+%2B+3+%5Csqrt%7B5%7D++%5Cdiv+4+-+3+%5Csqrt%7B5+%7D++%3D+a+%2B+b+%5Csqrt%7B5%7D+)
hoy toh a ,b shodho.
Answers
Answered by
0
Step-by-step explanation:
the answer is in attachment
Attachments:
![](https://hi-static.z-dn.net/files/d96/2dd957ecdf0a3640aea0be3289845a9f.jpg)
Answered by
0
Step-by-step explanation:
Simplifying square roots
Example
Let's simplify \sqrt{75}75square root of, 75, end square root by removing all perfect squares from inside the square root.
We start by factoring 757575, looking for a perfect square:
75=5\times5\times3=\blueD{5^2}\times375=5×5×3=52×375, equals, 5, times, 5, times, 3, equals, start color #11accd, 5, squared, end color #11accd, times, 3.
We found one! This allows us to simplify the radical:
\begin{aligned} \sqrt{75}&=\sqrt{\blueD{5^2}\cdot3} \\\\ &=\sqrt{\blueD{5^2}} \cdot \sqrt{{3}} \\\\ &=5\cdot \sqrt{3} \end{aligned}75=52⋅3=52⋅3=5⋅3
Attachments:
![](https://hi-static.z-dn.net/files/db3/4bcbc916abec4371327221c280f2e5b5.jpg)
Similar questions