Math, asked by rahul8535, 1 year ago


4  \div  \sqrt{11 -   \sqrt{7}

Answers

Answered by AbhijithPrakash
2

Answer:

\dfrac{4}{\sqrt{11-\sqrt{7}}}=\dfrac{2\left(11+\sqrt{7}\right)\sqrt{11-\sqrt{7}}}{57}\quad \left(\mathrm{Decimal:\quad }\:1.38391\dots \right)

Step-by-step explanation:

\dfrac{4}{\sqrt{11-\sqrt{7}}}

\gray{\mathrm{Multiply\:by\:the\:conjugate}\:\dfrac{\sqrt{11-\sqrt{7}}}{\sqrt{11-\sqrt{7}}}}

=\dfrac{4\sqrt{11-\sqrt{7}}}{\sqrt{11-\sqrt{7}}\sqrt{11-\sqrt{7}}}

\black{\sqrt{11-\sqrt{7}}\sqrt{11-\sqrt{7}}=11-\sqrt{7}}

=\dfrac{4\sqrt{11-\sqrt{7}}}{11-\sqrt{7}}

\gray{\mathrm{Multiply\:by\:the\:conjugate}\:\dfrac{11+\sqrt{7}}{11+\sqrt{7}}}

=\dfrac{4\sqrt{11-\sqrt{7}}\left(11+\sqrt{7}\right)}{\left(11-\sqrt{7}\right)\left(11+\sqrt{7}\right)}

\black{\left(11-\sqrt{7}\right)\left(11+\sqrt{7}\right)=114}

=\dfrac{4\left(11+\sqrt{7}\right)\sqrt{11-\sqrt{7}}}{114}

\gray{\mathrm{Cancel\:the\:common\:factor:}\:2}

=\dfrac{2\left(11+\sqrt{7}\right)\sqrt{11-\sqrt{7}}}{57}

Similar questions