Math, asked by paramcomforchowdhury, 2 days ago


4608 =  {4}^{a}  \times  {a}^{b}  \times  {b}^{a}
Then find the value of -
 {a}^{a}  +  {b}^{b}
Don't give nonsense answers .​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:4608 = {4}^{a} \times {a}^{b} \times {b}^{a}

Let first factorize 4608.

So,

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:4608 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:2304 \:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:1152\:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:576 \:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:288 \:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:144 \:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:72 \:\:}} \\  {\underline{\sf{2}}}& \underline{\sf{\:\:36\:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:18 \:\:}} \\{\underline{\sf{3}}}& \underline{\sf{\:\:9 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:3 \:\:}} \\  \underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}

\rm :\longmapsto\:4608 =  {2}^{9} \times  {3}^{2}

\rm :\longmapsto\:4608 =  {2}^{3 + 6} \times  {3}^{2}

\rm :\longmapsto\:4608 =  {2}^{3} \times  {2}^{6}  \times  {3}^{2}

\rm :\longmapsto\:4608 =  {2}^{3} \times  {4}^{3}  \times  {3}^{2}

can be re-arranged as

\rm :\longmapsto\:4608 =  {4}^{3} \times  {3}^{2}  \times  {2}^{3}

So, on comparing with

\rm :\longmapsto\:4608 = {4}^{a} \times {a}^{b} \times {b}^{a}

we get

\rm \implies\:a = 3 \:  \: and \:  \: b = 2

Now, Consider

\rm :\longmapsto\: {a}^{a} +  {b}^{b}

\rm \:  =  \:  {3}^{3} +  {2}^{2}

\rm \:  =  \: 27 + 4

\rm \:  =  \: 31

Hence,

\rm :\longmapsto\: \boxed{\tt{ {a}^{a} +  {b}^{b}  = 31 \: }}

Similar questions