Math, asked by palakvishwakarma3737, 8 days ago


4i {}^{8}  - 3i {}^{9}  + 3  \\  \div 3i {}^{11}  - 4i {}^{10}  - 2
complex number.
dont spam Or wrong answer,if you do this I'll report your account​

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\  \\  \frac{4i {}^{8} - 3i {}^{9}  + 3 }{3i {}^{11} - 4i - 2 }  \\  \\ we \: know \: that \\  \\ i {}^{2}  =  - 1 \\  \\ i {}^{3}  =  - i \\  \\ i {}^{4}  \: and \:  \: i {}^{4n} = 1

thus \: then \\  \\  =  \frac{4i {}^{8}  - 3i {}^{9}  + 3}{3i {}^{11} - 4i {}^{10}  - 2 }  \\  \\  =  \frac{(4 \times 1)  - (3i {}^{8} \times i)  + 3}{(3i {}^{8 + 3 \  {}^{} }   {}^{}  ) - (4i {}^{8 + 2}   {} ) - 2 }  \\  \\  =  \frac{4 - 3i + 3}{3( - i) - 4( - 1)(1) - 2}  \\  \\  =  \frac{7 - 3i}{ - 3i + 4 - 2}  \\  \\  =  \frac{7 - 3i}{2 - 3i}

so \: conjugate \: of \: (2 - 3i) \:  \: is \\ (2 + 3i) \\  \\ thus \: then \\ rationalsing \: denominator \\ we \: have \\  \\  =  \frac{7 - 3i}{2 - 3i}  \times  \frac{2 + 3i}{2 + 3i}  \\  \\  =  \frac{(7 - 3i)(2 + 3i)}{(2) {}^{2} - (3i) {}^{2}  }  \\  \\  =  \frac{14 + 21i - 6i - 9i {}^{2} }{4 - 9i {}^{2} }  \\  \\  =  \frac{14 - 9( - 1) + 15i}{4 - 9( - 1)}  \\  \\  =  \frac{14 + 9 + 15i}{4 + 9}  \\  \\  =  \frac{23 + 15i}{13}  \\  \\ a + ib =  \frac{23}{13}  +  \frac{15i}{13} \\  \\ a + ib  =  \frac{23}{13}  +  \frac{15}{13} i

equating \: real \: and \: imaginary \: parts \\ we \: have \: then \\  \\ a =  \frac{23}{13}  \\  \\ b =  \frac{15}{13}

Similar questions