Math, asked by abhi12152005, 11 months ago


(4p {}^{2}  - 16) \div 4p(p - 2)

Answers

Answered by Sharad001
80

Question :-

 \implies \:  \sf \frac{4 {p}^{2}  - 16}{4p(p - 2)}  \\

Answer :-

 \implies \:  \boxed{\sf{\frac{p + 2}{p} } \: }  \: or \:  \boxed{\sf{ 1 +  \frac{2}{p} }} \:

Formula used :-

  \star  \:  \: \sf{  {x}^{2}  -  {y}^{2}  = (x + y)(x - y)}

Explanation :-

We have

 \implies \:  \sf \frac{4 {p}^{2}  - 16}{4p(p - 2)}  \\   \:  \\ \bf{we \: can \: write \: it} \\  \\  \implies \sf \frac{4( {p}^{2} - 4) }{4p(p - 2)}  \\  \\  \implies \sf   \frac{ {p}^{2} -  {2}^{2}  }{p(p - 2)}  \\  \\  \implies \:  \sf{ \frac{( p- 2) (p+ 2)}{p(p - 2)} } \\  \\  \implies \sf{\frac{p + 2}{p} } \\  \\ \tt{ or} \\  \\  \implies \:   \sf{\frac{p}{p}  +  \frac{2}{p} } \\  \\  \implies  \boxed{\sf{ 1 +  \frac{2}{p} }}

\___________________/

Similar questions