Math, asked by devangthakur17, 10 months ago


4x ^{2}  + 3x + 5 = 10

Answers

Answered by DrNykterstein
0

 =  =  >  \:  \: 4 {x}^{2}  + 3x + 5 = 10 \\  \\  =  =  >  \:  \: 4 {x}^{2}  + 3x = 5 \\   \\  =  =  >  \:  \:  {(2x)}^{2}  + 2 \times 2x \times  \frac{3}{4}  = 5 \\  \\  =  =  >  \:  \:  {(2x)}^{2}  + 2 \times 2x \times  \frac{3}{4}  +  { \left( \frac{3}{4}  \right)}^{2}   = 5 + { \left( \frac{3}{4}  \right)}^{2}   \\  \\  =  =  >  \:  \:  { \left( 2x +  \frac{3}{4} \right)}^{2}  = 5 +  \frac{9}{16}  \\  \\  =  =  >  \:  \:  { \left( 2x +  \frac{3}{4}  \right)}^{2}  =  \frac{89}{16}  \\  \\  =  =  >  \:  \: 2x +  \frac{3}{4}  =  \pm \:   \frac{ \sqrt{89} }{4}

Case - +ve

 =  =  >  \:  \: 2x +  \frac{3}{4}  =  \frac{ \sqrt{89} }{4}  \\  \\  =  =  >  \:  \: 2x =  \frac{ \sqrt{89} }{4}  -  \frac{3}{4}  \\  \\  =  =  >  \:  \: 2x =  \frac{ \sqrt{89}  - 3}{4}  \\  \\  =  =  >  \:  \: x =  \frac{ \sqrt{89} - 3 }{8}

Case - (-ve)

 =  =  >  \:  \: 2x +  \frac{3}{4}  =  -  \frac{ \sqrt{89} }{4} \\  \\  =  =  >  \:  \: 2x =  -  \frac{ \sqrt{89}}{4}   -  \frac{3}{4}  \\  \\  =  =  >  \:  \: x =  \frac{ -  \sqrt{89}  - 3}{8}  \\  \\  =  =  >  \:  \: x =  \frac{ - ( \sqrt{89}  + 3)}{8}

Similar questions