Math, asked by as1508968, 1 year ago


4x  {}^{2}  - x + 4 \\  \:  \: find \: the \: value \: of \:  \:  \: 1 \alpha  + 1 \beta  \\\\

Answers

Answered by Anonymous
1

Step-by-step explanation:

4x^2 -x +4 = 0

let's roots be alpha and beta

we know sum of roots = -b/a

alpha + beta = 1/4

Answered by BrainlyConqueror0901
4

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore \alpha+\beta=\frac{1}{4}}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a quadratic eqn whose roots are alpha and beta.

• We have to find the given value.

 \underline \bold{Given : } \\  \implies  \alpha  \: and \:  \beta  \:   \in ({4x}^{2}  - x + 4) \\  \\  \underline \bold{To \: Find : } \\  \implies  \alpha  +  \beta  = ?

• According to given question :

 \bold{By \: Quadratic \: eqn : } \\  \implies 4 {x}^{2}  - x + 4 = 0 \\  \\  \implies x =  \frac{ - b \pm  \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\  \implies x =  \frac{ - ( - 1) \pm \sqrt{  {( - 1)}^{2} - 4 \times 4 \times 4 } }{2 \times 4}  \\  \\  \implies x =  \frac{1 \pm  \sqrt{1 - 16} }{2\times 4}

 \implies x =  \frac{1 \pm \sqrt{ - 15} }{8}  \\  \\  \bold{note =  \sqrt{ - 15}  = i} \\  \\  \implies x =  \frac{1 \pm i}{8}  \\  \\   \bold{\implies   \alpha  =  \frac{1 + i}{8}  }\\  \\   \bold{ \implies  \beta  =  \frac{1 - i}{8} } \\  \\  \bold{for \: finding \: values : } \\  \implies  \alpha  +  \beta  =  \frac{1 + i}{8}  +  \frac{1 - i}{8}  \\  \\  \implies  \alpha  +  \beta  =  \frac{1  \cancel{+ i }+ 1 \cancel{ - i}}{8}  \\  \\  \implies  \alpha  +  \beta  =  \frac{\cancel2}{\cancel8}  \\  \\   \bold{\implies  \alpha  +  \beta  =  \frac{1}{4} }

Similar questions