Math, asked by killadalillyfnf10a, 9 months ago


4y \: square \:  - y - 14 = 0

Answers

Answered by CoruscatingGarçon
8

Answer:

y=2. y=-7/4

Step-by-step explanation:

4y^2-y-14=0

=> 4y^2 - 8y +7y -14=0

=> 4y(y-2) +7(y-2)=0

=>(4y+7)(y-2)=0

y=2. y=-7/4

PLS MARK IT BRAINLIEST

Answered by Anonymous
15

Given:

 \\  \\ 4 {y}^{2}  - y - 14 = 0 \\  \\  \\

To Calculate:

\\\\

Value of y.

\\\\\\

Answer:

 \\  \\ 4 {y}^{2}  - y - 14 = 0 \\  \\

Using Sridharacharya Formula,

 \\    \tt \: x = \dfrac{ - b \:  \pm \:  \sqrt{{b}^{2} - 4ac }}{2a}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\\sf where \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:   \: \\\tt x \:  =  \: roots \: of \: the \: equation \:  \:  \\\tt a = constant \: in \: a {x}^{2} +  bx + c \\ \tt b  = constant \: in \: a {x}^{2} +  bx + c \\\tt c = constant \: in \: a {x}^{2} +  bx + c \\  \\  \\

Here,

\\

a = 4

b = -1

c = -14

\\\\

Substituting the values of a , b and c , we get:

 \\  \\\sf  y =  \dfrac{ - ( - 1) \: \pm \: \sqrt{ ( - 1)^{2} - 4 \times 4 \times ( - 14) }}{2  \times 4}  \\ \sf y =  \dfrac{1 \: \pm \: \sqrt{1 + 224}  }{8}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\\sf y =  \frac{1 +  \sqrt{225} }{8}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \sf y =  \dfrac{1 + 15}{8}  \:  \: or \:  \: y =  \dfrac{1 - 15}{8}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \sf y = 2 \:  \:  \: or \:  \:  \: y =  -  \dfrac{7}{4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\\sf  y = 2 \:  \:  \: or \:  \:  \: y =  - 1.75 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\

Therefore, the answer is:

\\\\

y = 2 or y = -1.75

\\\\\\

Additional Information:

\\\\

1) In Quadratic Formula, the value of a, b and c can be negative if the equation contains a , b and c with negative sign .

\\\\

2) In some questions, if the value of root cannot be negative , then we neglect the negative value of root.

\\\\

3) We take out the square root of discriminant in quadractic formula by Division Method. b²-4ac is called the discriminant.

\\\\

4) If the value of discriminant is coming less than zero i.e. with negative sign, the roots of the equation become complex roots.

Similar questions