Answers
Answered by
6
Answer:
Step-by-step explanation:
Given:
→5+2√3÷7+4√3=a + b√3.
Answer:
→Given (5 + 2√3)/(7 + 4√3) = a + b√3
Rationalizing the denominator on left-hand-side by multiplying the numerator and denominator with (7 - 4√3),
→(5 + 2√3) (7 - 4√3)/(7 + 4√3) (7 - 4√3) = a + b√3 ,
Multiply term by term the two expressions on numerator of L.H.S. and for the denominator apply the identity (m+n) (m-n) = m² - n² . We obtain,
→(35 - 20√3 + 14√3 - 8.√3.√3)/[7² - (4√3)²] = a + b√3 ,
→Or, (35 - 6√3 - 8.3)/(49 - 48) = a + b√3 ,
→Or, (35 - 6√3 - 24)/1 = a + b√3 ,
→Or, 11 - 6√3 = a + b√3 ,
→Now equate the rational and irrational terms from both sides.
→11 = a,
→Or, a = 11 ,
→- 6√3 = b√3 ,
⇒ b = -6 ,
Verification:
→To prove (5 + 2√3)/(7 + 4√3) = a + b√3 ,
→i.e. to prove (5 + 2√3) = (a + b√3) (7 + 4√3) ,
→Substituting for a=11 and b=-6,
→R.H.S.= (a + b√3) (7 + 4√3) ,
→(11 - 6√3) (7 + 4√3) = 11.7 + 11.4√3 - 6√3.7 - 6.4.√3.√3 = 77 + 44√3 - 42√3 - 24.3 .
→77 + 2√3 - 72 = 5 + 2√3 = L.H.S.
Answered by
1
Answer:
a=11 b= -6
Step-by-step explanation:
GIVEN,
Similar questions