Math, asked by reenagrg669, 1 month ago


5 \cos  ^{2} 60^{0}   + 4 \sec ^{2} 30 ^{0}  -  \tan ^{2} 45^{0}   \div  \sin ^{2}  30 ^{0}  +  \cos ^{2} 30 ^{0}

Plz answer above question..​

Answers

Answered by nandanipatel20605
1

Answer:

55/12

Step-by-step explanation:

Kindly find this attachment for reference!

Attachments:
Answered by kunalkumar06500
1

{ \huge{ \red{ \underline{ \mathfrak{ \purple{ÆÑẞWÊR}}}}}}

Step-by-step explanation:

 =  >  \frac{5 \cos ^{2} 60^{0} + 4 \sec ^{2} 30 ^{0} - \tan ^{2} 45^{0} }{sin ^{2} 30 ^{0} + \cos ^{2} 30 ^{0}}

 =  > \frac{5( \frac{1}{2})^{2} + 4( \frac{2}{ \sqrt{3} } )^{2}  - (1)^{2} }{( \frac{1}{2})^{2}  + ( \frac{ \sqrt{3} }{2})^{2} }

{  \boxed{ \red{ \cos60 =  \frac{1}{2}  :  \sec30 =  \frac{2}{ \sqrt{3}}:\tan45 = 1:  \sin30 =  \frac{1}{2}  :  \cos30 =  \frac{ \sqrt{3} }{2}}}}

 =  >  \frac{ \frac{5}{4}  +  \frac{16}{3}  - 1}{ \frac{1}{4}  +  \frac{3}{4} }

 =  >  \frac{ \frac{5}{4}  +  \frac{16}{3} - 1 }{ \frac{4}{4} }

 =  >  \frac{3 + 64}{12}

 =  >  { \boxed{ \green{\frac{67}{12}}}}

 \sf \red{i \: hope \: it \: helpfull \: for \: you}

Similar questions