Math, asked by mohdshahid3742, 6 months ago


5 <  >  \geqslant  \leqslant  \geqslan \geqslant  \geqslant  \leqslant

Answers

Answered by gentryamansharma51
3

Answer:

oscillations/seconds</p><p></p><p>Learn more on brainly :-</p><p></p><p>\begin{gathered}\begin{gathered}\begin{gathered}\sf \large \red{\underline{ Question:-}}\\\\\end{gathered}\end{gathered}Question:−\end{gathered}Question:−Question:−</p><p></p><p>The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.</p><p></p><p>\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Given:-}}\\\\\end{gathered}\end{gathered}Given:−\end{gathered}Given:−Given:−</p><p></p><p>The measures of two adjacent angles of a parallelogram are in the ratio 3:2.</p><p></p><p>\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{To \: Find:-}}\\\\\end{gathered}\end{gathered}ToFind:−\end{gathered}ToFind:−ToFind:−</p><p></p><p>Find the measure of each of the angles of the parallelogram.</p><p></p><p>\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Solution :- }}\\\\\end{gathered}\end{gathered}Solution:−\end{gathered}Solution:−Solution:−</p><p></p><p>\text{ \sf suppose the angles be equal to 3x and 2x} suppose the angles be equal to 3x and 2x suppose the angles be equal to 3x and 2x suppose the angles be equal to 3x and 2x</p><p></p><p>\boxed{ \sf \orange{ we \: have \: ardjacent \: angles \: of \: a \: parallelogram \: = 180}}wehaveardjacentanglesofaparallelogram=180wehaveardjacentanglesofaparallelogram=180wehaveardjacentanglesofaparallelogram=180</p><p></p><p>\begin{gathered}\begin{gathered}\begin{gathered}\\ \sf \underline{ \green{putting \: all \: values : }}\end{gathered}\end{gathered}puttingallvalues:\end{gathered}puttingallvalues:puttingallvalues:</p><p></p><p>\begin{gathered}\begin{gathered}\begin{gathered}\: \\ \sf \to \: 3x + 2 x = 180\: \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \:5x = 180 \\ \\ \: \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \frac{180}{5} \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \cancel{ \frac{180}{5} } \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \purple{x = 36}\\\\\end{gathered}\end{gathered}→3x+2x=180→5x=180→x=5180→x=5180→x=36\end{gathered}→3x+2x=180→5x=180→x=5180→x=5180→x=36→3x+2x=180→5x=180→x=5180→x=5180→x=36</p><p></p><p>\begin{gathered}\begin{gathered}\begin{gathered}\sf \to \: 3x \\ \sf \to \: 3 \times 36 \\ \sf \to \red{108 }\\ \\ \\ \sf \to \: 2x \\ \sf \to \: 2 \times 36 \\ \sf \to \orange{72} \\\end{gathered}\end{gathered}→3x→3×36→108→2x→2×36→72\end{gathered}→3x→3×36→108→2x→2×36→72→3x→3×36→108→2x→2×36→72</p><p></p><p>\sf \large\underline{ \blue{verification }} \huge \dagverification†verification\dagverification†</p><p></p><p>\begin{gathered}\begin{gathered}\begin{gathered}\\ \\ \sf \to 3x + 2x = 180 \\ \\ \sf \to \: 3 \times 36 +2 \times 36 = 180 \\ \\ \sf \to \: 108 + 72 = 180 \\ \\ \sf \to \:180 = 180 \\ \\ \large \underline{ \pink{ \sf \: hence \: verified}} \huge \dag\end{gathered}\end{gathered}→3x+2x=180→3×36+2×36=180→108+72=180→180=180henceverified†\end{gathered}→3x+2x=180→3×36+2×36=180→108+72=180→180=180henceverified†→3x+2x=180→3×36+2×36=180→108+72=180→180=180henceverified†</p><p></p><p>

Similar questions