Math, asked by abhay1tomar, 1 year ago


5 \sqrt{5x {}^{2} }  + 30x + 8 \sqrt{5}
Who can Do It.

Answers

Answered by BrainlyQueen01
14
Hi there !

_______________________

Given :

 \mathsf{5 \sqrt{5} x {}^{2} + 30x + 5 \sqrt{5} }

 \huge {\bold {Solution :}}

On splitting the middle term, we get ;

 \mathsf{5 \sqrt{5}x {}^{2} + 30x + 8 \sqrt{5} } \\ \\ \mathsf{5 \sqrt{5}x {}^{2} + 20x + 10x + 8 \sqrt{5} } \\ \\ \mathsf{(5x \times \sqrt{5} x) + (5 \times 4)x +( 2 \sqrt{5} \times \sqrt{5} )x + (2 \sqrt{5} \times 4) } \\ \\ \mathsf{5x( \sqrt{5 }x + 4) + 2 \sqrt{5}( \sqrt{5}x + 4) } \\ \\ \bold{taking \: ( \sqrt{5}x + 4) \: as \: common.. } \\ \\ \mathsf{( \sqrt{5}x + 4)(5x + 2 \sqrt{5} )}

Hence, the answer is ( √5 x + 4 ) ( 5x + 2√5 ).

_______________________

Thanks for the question !

☺️☺️☺️
Answered by anonymous64
4
<b>Heya mate. (^_-). Solution below.
=========================================

♠ Factorization of Quadratic Trinomials ♠


Polynomials of form ax² + bx + c,


Here, we find two integers p and q such that p + q = b and pq = ac





♣ Coming back to question,


★ Given expression is 5√5x² + 30x + 8√5.

Here, 5√5 × 8√5 = (5 × 8 × √5 × √5) = 200.




♦ By midterm split method, we split 30 into two parts whose sum would be 30 and product 200.



♦ After calculating, we find 20 + 10 = 30 and 20 × 10 = 200




•°• 5√5x² + 30x + 8√5

= 5√5x² + 20x + 10x + 8√5

= 5x (√5x + 4) + 2√5 (√5x + 4)

= (5x + 2√5) (√5x + 4)



♥ Hence, 5√5x² + 30x + 8√5 = (5x + 2√5)(√5x + 4)
=========================================

Thank you.. ^_^
Similar questions