Math, asked by ratdna, 1 year ago

 {5}^{x + y} = 125 \\ {5}^{x - y} = 25 \\ \\
Find the values of x and y.

Answers

Answered by siddiquiarsalan766
1

Answer:

.....................

Attachments:
Answered by rakhithakur
2

Step-by-step explanation:

 {5}^{x + y}  =  {5}^{x} .5y = 125 \\  {5}^{x}  =  \frac{125}{ {5}^{y} }

 {5}^{x - y}  =   \frac{ {5}^{x} }{ {5}^{y} }  = 25 \\  \frac{ \frac{125}{ {5}^{y} } }{ {5}^{y} }  = 25 \\

let

 {5}^{y}  = t

then

 \frac{ \frac{125}{ {t}} }{t}  = 25 \\   \frac{125}{ {t}^{2} }  = 25 \\  {t}^{2}  =  \frac{125}{25}  = 25 \\ so \: t =   + _{ - }25

now

 {5}^{y}  = 25 =  {5}^{2 }  \\ so \: y = 2

and

 {5}^{x}  =  \frac{125}{ {5}^{y} }  =  \frac{125}{25  }  \\  = 25 =  {5}^{2}  = so \: x = 2

now we can say that x= y=2 ans

Similar questions