Math, asked by utstudticgjckhchkvjk, 6 months ago

5x - 2(2x - y ) = 2(3x - 1) + \frac{7}{2}

Answers

Answered by Anonymous
58

\large\star\underline\textsf{Correct Question :- }\\\\

\underbrace{\sf{\purple{5x-2(2x-7)=2(3x-1)+    \dfrac{7}{2}  }}}\\\\

\red{\underbrace{\mathtt{Ans. \dfrac{5}{2}  }}}\\\\

\huge\underline\textsf{Explantion:- }\\\\

\small{\underline{\overline{\mid{\mathsf{\purple{\:\: Let \:open\: the \:brackets\:\:} \mid}}}}}\\\\

\leadsto\sf LHS = 5x - 4x + 14 = x + 14\\\\

\leadsto\sf RHS = 6x - 2 +  \dfrac{7}{2} \\\\

\leadsto\sf6x -  \dfrac{4}{2}  +  \dfrac{7}{2}  \\\\

\leadsto\sf6x +  \dfrac{3}{2} \\\\

\leadsto\sf The \: equation \: is \: x + 14 = 6x +  \dfrac{3}{2}\\\\

\leadsto\sf14 = 6x - x +  \dfrac{3}{2 }  \\\\

\leadsto\sf14 = 5x +  \dfrac{3}{2}\\\\

\underbrace{\sf\bigg(Transposing \:  \dfrac{3}{2} \bigg) }\\\\

\leadsto\sf14 -  \dfrac{3}{2}  = 5x \\\\

\leadsto\sf \dfrac{28 - 3}{2}  = 5x \\\\

\leadsto\sf \dfrac{25}{2}  = 5x \\\\

\leadsto\sf x  = \dfrac{25}{2 }  \times  \dfrac{1}{5}  =  \dfrac{5 \times 5}{2 \times 5}\\\\

\leadsto\boxed{\sf x = \dfrac{5}{2} }\\\\

\underbrace{\sf Therefore ,\: requried \: solution \: is \: x =  \dfrac{5}{2} }\\\\

\huge\underline{\underline{\texttt{\purple{Verification-}}}}

\implies\sf  \: LHS \:  = 5 \times  \dfrac{5}{2}  - 2\bigg( \dfrac{5}{2}  \times 2 - 7\bigg)\\\\

\implies\sf \dfrac{25}{2}  - 2\bigg(5 - 7\bigg) \\ \\

\implies\sf \dfrac{25}{2}  - 2\bigg( - 2\bigg)\\\\

\implies\sf \dfrac{25}{2}  + 4\\\\

\implies\sf \dfrac{25 + 8}{2}  \\ \\

\implies\sf \dfrac{33}{2}  \\\\

\implies\sf RHS = 2\bigg( \dfrac{5}{2}  \times 3 - 1\bigg) +  \dfrac{7}{2} \\\\

\implies\sf2\bigg( \dfrac{15}{2}  -  \dfrac{2}{2} \bigg) +  \dfrac{7}{2}  \\\\

\implies\sf  \dfrac{2 \times 13}{2}  +  \dfrac{7}{2} \\\\

\implies\sf \dfrac{26 + 7}{2} \\ \\

\implies\sf \dfrac{33}{2}  = LHS

Similar questions