Math, asked by jainprince1604, 3 months ago


5x {}^{2}  - 4x - 3 = 0 \: solve \: using \: formula \: method

Answers

Answered by Anonymous
8

Given Equation

   \tt : \implies \: 5 {x}^{2}  - 4x - 3 = 0

To Find

\tt : \implies \: zeroes \:

Formula

\tt : \implies \: x =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

Now Compare with

\tt : \implies \:  {ax}^{2}  + bx + c = 0

we get

 \tt : \implies \: a = 5,b =  - 4 \: and \: c \:  =  - 3

Now put the value on formula

\tt : \implies\: x =  \dfrac{ - ( - 4) \pm \sqrt{( - 4) ^{2}  - 4 \times 5 \times  - 3} }{2 \times 5}

\tt : \implies  x =  \dfrac{4 \pm \sqrt{16 + 20 \times 3} }{10}

 \tt : \implies \: x =  \dfrac{4 \pm \sqrt{16 + 60} }{10}

\tt : \implies \: x =  \dfrac{4 \pm \sqrt{76} }{10}

 \tt : \implies \: x =  \dfrac{4 \pm 2\sqrt{19} }{10}

\tt : \implies \: x =  \dfrac{2 \pm \sqrt{19} }{5}

\tt : \implies \: x \:  =  \dfrac{2 +  \sqrt{19} }{5}  \:  \: and \: x =  \dfrac{2 -  \sqrt{19} }{5}

Answer

\tt : \implies \: x \:  =  \dfrac{2 +  \sqrt{19} }{5}  \:  \: and \: x =  \dfrac{2 -  \sqrt{19} }{5}

Answered by Anonymous
13

{\pmb{\sf{\bigstar \: {\underline{Required \; Solution...}}}}}

Solve the following by using formula: 5x²-4x-3=0, have to find zeroes of the given equation. Let's do it!

{\pmb{\sf{\bigstar \: {\underline{Using \; formula...}}}}}

{\small{\underline{\boxed{\sf{\bull \: x \: = \dfrac{-b+\sqrt{b^2-4ac}}{2a}}}}}}

{\pmb{\sf{\bigstar \: {\underline{Firstly, \: Some \: Knowledge...}}}}}

Some other knowledge about Quadratic Equations -

★ Sum of zeros of any quadratic equation is given by ➝ α+β = -b/a

★ Product of zeros of any quadratic equation is given by ➝ αβ = c/a

★ Discriminant is given by b²-4ac

  • Discriminant tell us about there are solution of a quadratic equation as no solution, one solution and two solutions.

★ A quadratic equation have 2 roots

★ ax² + bx + c = 0 is the general form of quadratic equation.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━

{\pmb{\sf{\bigstar \: {\underline{Full \; Solution...}}}}}

~ Firstly let us compare by using the general form of quadratic equation that is ax² + bx + c = 0 we get the following:

  • a is 5, b is -4 and c is -3

~ Now by using the formula let us solve the question!

{\small{\underline{\boxed{\sf{\bull \: x \: = \dfrac{-b+\sqrt{b^2-4ac}}{2a}}}}}} \\ \\ :\implies \sf x \: = \dfrac{-b+\sqrt{b^2-4ac}}{2a} \\ \\ :\implies \sf x \: = \dfrac{-(-4) + \sqrt{(-4)^2 - 4(5)(-3)}}{2(5)} \\ \\ :\implies \sf x \: = \dfrac{-(-4) + \sqrt{(-4)^2 - 4 \times 5 \times -3}}{2(5)} \\ \\ :\implies \sf x \: = \dfrac{-(-4) + \sqrt{(-4)^2 - 4 \times -15}}{2(5)} \\ \\ :\implies \sf x \: = \dfrac{-(-4) + \sqrt{-4 \times -4 - 4 \times -15}}{2(5)} \\ \\ :\implies \sf x \: = \dfrac{-(-4) + \sqrt{ - 4 \times  -4 - 4 \times -15}}{2(5)} \\ \\ :\implies \sf x \: = \dfrac{-(-4) + \sqrt{16  + 60}}{2 \times 5} \\ \\ :\implies \sf x \: = \dfrac{-(-4) + \sqrt{76}}{10} \\ \\ :\implies \sf x \: = \dfrac{4+2 \sqrt{19}}{10} \\ \\ :\implies \sf x \: =  \dfrac{2+\sqrt{19}}{5} \: or \: x \: =  \dfrac{2-\sqrt{19}}{5}

Similar questions