Math, asked by alkadalwadi, 11 months ago


5x {}^{2} + 6 \sqrt{5  }  x + 9 = 0
by completing the square method only ​

Answers

Answered by Anonymous
5

Answer :-

Root of equation is - 3√5 / 5

Explanation :-

5x^{2}  + 6 \sqrt{5} x + 9 = 0 \\  \\  \implies 5x^{2}  + 6 \sqrt{5} x =  - 9 \\  \\  \tt dividing \ throughout \ by \ 5 \\  \\  \implies  \dfrac{5x^{2} }{5} +  \dfrac{6 \sqrt{5}x}{5}  =  -  \dfrac{9}{5}  \\  \\  \implies  x^{2}  + 2(x) \bigg( \frac{6 \sqrt{5} }{10} \bigg) =  -  \dfrac{9}{5}  \\  \\  \tt adding \  \bigg(\dfrac{6 \sqrt{5} }{10} \bigg)^{2} on  \ both \ sides \\  \\  \  \implies x^{2}  + 2(x) \bigg( \dfrac{6 \sqrt{5} }{10} \bigg) +  \bigg(\dfrac{6 \sqrt{5} }{10} \bigg)^{2} =  -  \dfrac{9}{5}  + \bigg(\dfrac{6 \sqrt{5} }{10} \bigg)^{2}  \\  \\  \implies  \bigg(x +  \dfrac{6 \sqrt{5} }{10}  \bigg)^{2}  =  -  \dfrac{9}{5}  + \bigg(\dfrac{6 \sqrt{5} }{10} \bigg)^{2}  \\  \\  \sf \{ \because  {a}^{2}  + 2ab +  {b}^{2}  = (a + b)^{2}  \} \\  \\

 \implies  \bigg(x + \dfrac{6 \sqrt{5} }{10} \bigg)^{2}  =   - \dfrac{9}{5}  +  \dfrac{18}{10}  \\  \\  \implies  \bigg(x +  \dfrac{6 \sqrt{5} }{10}  \bigg)^{2}  =  0 \\  \\  \implies x +  \dfrac{6 \sqrt{5} }{10}  = 0 \\  \\  \implies x =  -  \dfrac{6 \sqrt{5} }{10}  \\ \\ \implies x = - \dfrac{3 \sqrt{10} }{5}\\

Root of the equation is - 310/5

Similar questions