Math, asked by itz13deep, 1 year ago


  {6}^{15}  \times  {10}^{5} =  {2}^{x}  \times  {3}^{y}  \times  {5}^{z} find(x + y + z)

Answers

Answered by BrainlyPopularman
1

Step-by-step explanation:

 {6}^{15}  \times  {10}^{5}  =  {2}^{x}  \times  {3}^{y}  \times  {5}^{z}  \\  \\  =  >  {2}^{15}  \times  {3}^{15}  \times  {5}^{5}  \times  {2}^{5}  =  {2}^{x}  \times  {3}^{y}  \times  {5}^{z}  \\  \\  =  >  {2}^{20}  \times  {3}^{15}  \times  {5}^{5}  =  {2}^{x}  \times  {3}^{y}  \times  {5}^{z}  \\  \\   compare \:  =  > \\  \\  \\  \\ x = 20 \:  \:  \:  \:  \: y = 15 \:  \:  \:  \:  \: z = 5 \\  \\ x + y + z = 20 + 15 + 5 = 40

Answered by Anonymous
0

Answer:

 \ \: we \: have \\  \ \:  \\  \implies \:  \red{ {6}^{15}  \times  {10}^{5}  =  {2}^{x}   \:  \times  {3}^{y}  \times  {5}^{z}  }\\  \\  \implies \:  {(2 \times 3)}^{15}  \times  {(2 \times 5)}^{5}  =  {2}^{x}  \times  {3}^{y}  \times  {5}^{z}  \\  \\  \implies \:  {2}^{15}  \times  {3}^{15}  \times  {2}^{5}  \times  {5}^{5}  =  {2}^{x}  \times  {3}^{y}  \times  {5}^{z}  \\  \\  \implies \: \green{  {2}^{20}  \times  {3}^{15}  \times  {5}^{5}  =  {2}^{x}  \times  {3}^{y}  \times  {5}^{z}  }\\  \\ \red{ \bf{ compairing \: on \: both \: sides}} \\  \\  \therefore \\   \:  \red{\boxed{ x = 20}} \: , \:  \:   \green{\boxed{y = 15}} \: , \:   \pink{\boxed{z = 5}}

Now,

=X+y+z

= 20+15+5

= 40 \mathfrak{Answer}

Similar questions