Math, asked by binitasapkota8967, 1 day ago


6(3x + 12) - 5(6x - 1) = 3(x - 8) - 5(7x - 1) + 9
plz give me answer ​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given linear equation

\sf :\longmapsto\:6(3x + 12) - 5(6x - 1) = 3(x - 8) - 5(7x - 1) + 9

↝ First open the braces.

\sf :\longmapsto\:18x + 72 -30x + 5= 3x - 24 - 35x  + 5 + 9

Rearrange the terms, we get

\sf :\longmapsto\:18x -30x  + 72+ 5= 3x - 35x  + 5 + 9 - 24

\sf :\longmapsto \:  -12x  + 77=  - 32x   - 10

\sf :\longmapsto \:  -12x + 32x=  -77   - 10

\sf :\longmapsto \:  20x=  -87

\bf\implies \:x =  -  \: \dfrac{87}{20}

Verification

Given equation is

\rm :\longmapsto\:6(3x + 12) - 5(6x - 1) = 3(x - 8) - 5(7x - 1) + 9

Consider LHS

\rm :\longmapsto\:6(3x + 12) - 5(6x - 1)

On substituting the value of x, we get

 \rm =  \: 6\bigg[ - 3 \times \dfrac{87}{20}  + 12\bigg] - 5\bigg[ - 6 \times \dfrac{87}{20}  - 1\bigg]

 \rm =  \: 6\bigg[  -  \dfrac{261}{20}  + 12\bigg] - 5\bigg[ - \dfrac{522}{20}  - 1\bigg]

 \rm =  \: 6\bigg[ \dfrac{ - 261 + 240}{20}\bigg] - 5\bigg[ \dfrac{ - 522 - 20}{20} \bigg]

 \rm =  \: 6\bigg[ \dfrac{ - 21}{20}\bigg] - 5\bigg[ \dfrac{ - 542}{20} \bigg]

 \rm =  \: \bigg[ \dfrac{ - 126}{20}\bigg]  + \bigg[ \dfrac{2710}{20} \bigg]

 \rm =  \: \dfrac{2584}{20}

 \rm =  \: \dfrac{1292}{10}

 \rm =  \: \dfrac{646}{5}

Consider RHS

\rm :\longmapsto\: 3(x - 8) - 5(7x - 1) + 9

On substituting the value of x, we get

 \rm =  \:  3\bigg[ - \dfrac{87}{20}  - 8\bigg] - 5\bigg[ - 7 \times \dfrac{87}{20} - 1 \bigg] + 9

 \rm =  \:  3\bigg[ \dfrac{ - 87 - 160}{20}\bigg] - 5\bigg[  \dfrac{ - 609}{20} - 1 \bigg] + 9

 \rm =  \:  3\bigg[ \dfrac{ - 247}{20}\bigg] - 5\bigg[  \dfrac{ - 609 - 20}{20}\bigg] + 9

 \rm =  \:  \bigg[ \dfrac{ - 741}{20}\bigg] - 5\bigg[  \dfrac{ - 629}{20}\bigg] + 9

 \rm =  \:  \bigg[ \dfrac{ - 741}{20}\bigg]  + \bigg[  \dfrac{3145}{20}\bigg] + 9

 \rm =  \: \dfrac{ - 741 + 3145 + 180}{20}

 \rm =  \: \dfrac{ 2584}{20}

 \rm =  \: \dfrac{ 1292}{10}

 \rm =  \: \dfrac{646}{5}

Hence, LHS = RHS

  • HENCE, VERIFIED

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Concept Used :-

We can use the following steps to find a solution using transposition method:

Step 1 :- dentify the variables and constants in the given linear equation.

Step 2 :- Simplify the equation on both sides by arithmetic operations.

Step 3 :- Transpose the term on the other side to solve the equation in simplest form.

Step 4 :- Simplify the equation using arithmetic operation to separate the variables and constants.

Step 5 :- Then the result will be the solution for the given linear equation.

Keep in mind :- While transposing

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: ( + ) \: changes \: to \: ( - ) \: }}}

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: (  -  ) \: changes \: to \: (  +  ) \: }}}

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: ( \times ) \: changes \: to \: ( \div ) \: }}}

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: (  \div  ) \: changes \: to \: ( \times ) \: }}}

Answered by XxitsmrseenuxX
0

Answer:

\large\underline{\sf{Solution-}}

Given linear equation

\sf :\longmapsto\:6(3x + 12) - 5(6x - 1) = 3(x - 8) - 5(7x - 1) + 9

↝ First open the braces.

\sf :\longmapsto\:18x + 72 -30x + 5= 3x - 24 - 35x  + 5 + 9

Rearrange the terms, we get

\sf :\longmapsto\:18x -30x  + 72+ 5= 3x - 35x  + 5 + 9 - 24

\sf :\longmapsto \:  -12x  + 77=  - 32x   - 10

\sf :\longmapsto \:  -12x + 32x=  -77   - 10

\sf :\longmapsto \:  20x=  -87

\bf\implies \:x =  -  \: \dfrac{87}{20}

Verification

Given equation is

\rm :\longmapsto\:6(3x + 12) - 5(6x - 1) = 3(x - 8) - 5(7x - 1) + 9

Consider LHS

\rm :\longmapsto\:6(3x + 12) - 5(6x - 1)

On substituting the value of x, we get

 \rm =  \: 6\bigg[ - 3 \times \dfrac{87}{20}  + 12\bigg] - 5\bigg[ - 6 \times \dfrac{87}{20}  - 1\bigg]

 \rm =  \: 6\bigg[  -  \dfrac{261}{20}  + 12\bigg] - 5\bigg[ - \dfrac{522}{20}  - 1\bigg]

 \rm =  \: 6\bigg[ \dfrac{ - 261 + 240}{20}\bigg] - 5\bigg[ \dfrac{ - 522 - 20}{20} \bigg]

 \rm =  \: 6\bigg[ \dfrac{ - 21}{20}\bigg] - 5\bigg[ \dfrac{ - 542}{20} \bigg]

 \rm =  \: \bigg[ \dfrac{ - 126}{20}\bigg]  + \bigg[ \dfrac{2710}{20} \bigg]

 \rm =  \: \dfrac{2584}{20}

 \rm =  \: \dfrac{1292}{10}

 \rm =  \: \dfrac{646}{5}

Consider RHS

\rm :\longmapsto\: 3(x - 8) - 5(7x - 1) + 9

On substituting the value of x, we get

 \rm =  \:  3\bigg[ - \dfrac{87}{20}  - 8\bigg] - 5\bigg[ - 7 \times \dfrac{87}{20} - 1 \bigg] + 9

 \rm =  \:  3\bigg[ \dfrac{ - 87 - 160}{20}\bigg] - 5\bigg[  \dfrac{ - 609}{20} - 1 \bigg] + 9

 \rm =  \:  3\bigg[ \dfrac{ - 247}{20}\bigg] - 5\bigg[  \dfrac{ - 609 - 20}{20}\bigg] + 9

 \rm =  \:  \bigg[ \dfrac{ - 741}{20}\bigg] - 5\bigg[  \dfrac{ - 629}{20}\bigg] + 9

 \rm =  \:  \bigg[ \dfrac{ - 741}{20}\bigg]  + \bigg[  \dfrac{3145}{20}\bigg] + 9

 \rm =  \: \dfrac{ - 741 + 3145 + 180}{20}

 \rm =  \: \dfrac{ 2584}{20}

 \rm =  \: \dfrac{ 1292}{10}

 \rm =  \: \dfrac{646}{5}

Hence, LHS = RHS

HENCE, VERIFIED

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Concept Used :-

We can use the following steps to find a solution using transposition method:

Step 1 :- dentify the variables and constants in the given linear equation.

Step 2 :- Simplify the equation on both sides by arithmetic operations.

Step 3 :- Transpose the term on the other side to solve the equation in simplest form.

Step 4 :- Simplify the equation using arithmetic operation to separate the variables and constants.

Step 5 :- Then the result will be the solution for the given linear equation.

Keep in mind :- While transposing

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: ( + ) \: changes \: to \: ( - ) \: }}}

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: (  -  ) \: changes \: to \: (  +  ) \: }}}

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: ( \times ) \: changes \: to \: ( \div ) \: }}}

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: (  \div  ) \: changes \: to \: ( \times ) \: }}}

Similar questions