Math, asked by rayyan1312, 1 year ago


 {6x}^{2}  + 7x - 13 = 0
Sovle by completing the square ​

Answers

Answered by arshadq
0

Answer:

(36x+7x)-13

(43x)-13

x; 43 + 13

x;56

Answered by dna63
0

6x {}^{2}  + 7x - 13 = 0 \\  =  > ( \sqrt{6} x) {}^{2}  + 2 \times  \sqrt{6} x \times  \frac{7}{2 \sqrt{6} }   + ( \frac{7}{2 \sqrt{6} } ) {}^{2}  - 13 = ( \frac{7}{2 \sqrt{6} } ) {}^{2} \\  =  > ( \sqrt{6} x +  \frac{7}{2 \sqrt{6} } ) ^{2}  - 13 =  \frac{49}{24}  \\  =  > ( \sqrt{6} x +  \frac{7}{2 \sqrt{6} } ) {}^{2}  =  \frac{49}{24}  + 13 \\  =  > ( \sqrt{6} x +  \frac{7}{2 \sqrt{6} } ) {}^{2} =  \frac{49 + 312}{24}  \\  =  > ( \sqrt{6} x +  \frac{7}{2 \sqrt{6} } ) {}^{2} =  \frac{361}{24}  \\  =  > \sqrt{6} x +  \frac{7}{2 \sqrt{6} } = ( +  - ) \sqrt{ \frac{361}{24} }  \\  =  >  \sqrt{6} x =  -  \frac{7}{2 \sqrt{6} } ( +  - ) \frac{19}{2 \sqrt{6} }  \\  =  >  \sqrt{6} x =  \frac{ - 7( +  - )19}{2 \sqrt{6} }  \\  =  > x =  \frac{ - 7( +  - )19}{2 \sqrt{6}  \times  \sqrt{6} }  \\  =  > x =  \frac{ - 7( +  - )19}{12}  \\  =  > x =  \frac{ - 7 + 19}{12}  \: or \:  \frac{ - 7 - 19}{12}  \\  =  > x =  \frac{12}{12}  \: or \:  \frac{ - 26}{12}  \\  =  > x = 1 \:  \: or \:  \:  \frac{ - 13}{6}  \: ans...

Hope it helps you.. plz mark it as Brainliest answer... thanks

Similar questions