Math, asked by shahnawazshaikh2256, 3 months ago


6x  - 3y =  - 10;  3x  + 5y - 8 = 0
Solve the following simultaneous equations by Cremer's method​

Answers

Answered by ItzBrainlyBeast
27

\LARGE\mathfrak{\underline{\underline{\: \: \: Solution :-}}}

↦ 6x - 3y = - 10 ..( i )

↦ 3x + 5y = 8 ...( ii )

__________________________________________________________

\large\: \bigstar\textsf{\: \: \: $D = \left[\begin{array}{c c} 6 & - 5 \\ 3 & 5 \end{array}\right]$}\\\\\\\large: \: \Longrightarrow\textsf{= ( 6 × 5 ) - [ 3 × ( - 3 )]}\\\\\\\large: \: \Longrightarrow\textsf{= 15 - ( - 9 )}\\\\\\\large: \: \Longrightarrow\textsf{= 15 + 9}\\\\\\\large: \: \Longrightarrow\underline{\boxed{\textsf{D = 24}}}

__________________________________________________________

\large\: \bigstar\textsf{\: \: \: $D_{x} = \left[\begin{array}{c c} -10 & - 3 \\ 8 & 5 \end{array}\right]$}\\\\\\\large: \: \Longrightarrow\textsf{= [ ( - 10 ) × 5 ] - [ 8 × ( - 3 ) ] }\\\\\\\large: \: \Longrightarrow\textsf{= ( - 50 ) - ( - 24 ) }\\\\\\\large: \: \Longrightarrow\textsf{= - 50 + 24 }\\\\\\\large : \: \Longrightarrow\underline{\boxed{\textsf{$D_{x} = - 26$}}}

__________________________________________________________

\large:\: \bigstar\textsf{\: \: \:$D_{y} = \left[\begin{array}{c c} 6 & - 10 \\ 3 & 8 \end{array}\right]$ }\\\\\\\large: \: \Longrightarrow\textsf{= ( 6 × 8 ) - [ 3 × ( - 10 ) ]}\\\\\\\large: \: \Longrightarrow\textsf{= 48 - ( - 30 )}\\\\\\\large: \: \Longrightarrow\textsf{= 48 + 30}\\\\\\\large : \: \Longrightarrow\underline{\boxed{\textsf{$D_{y} = 78$}}}

__________________________________________________________

\large\: \bigstar\textsf{\: \: \: $ x = \cfrac{D_{x}}{D}$ }\\\\\\\large: \: \Longrightarrow\textsf{$ = \cancel\cfrac{-26}{24}$}\\\\\\\large : \: \Longrightarrow\underline{\boxed{\textsf{$x = \cfrac{- 18}{17}$}}}

__________________________________________________________

\large\: \bigstar\textsf{\: \: \: $ y = \cfrac{D_{y}}{D}$}\\\\\\\large: \: \Longrightarrow\textsf{$= \cancel\cfrac{78}{24}$}\\\\\\\large: \: \Longrightarrow\underline{\boxed{\textsf{$x = \cfrac{39}{12}$}}}

__________________________________________________________

\large\textbf{∴ $ ( x , y ) = \left( \cfrac{- 18}{17} , \cfrac{39}{12}\right)$ \: \: \: is \: \: \: the \: \: \: Solution}

Similar questions