Math, asked by ansarisahil5917, 2 months ago


6x -  \frac{2}{x }  = 1
solve the quadratic equations by factorisation method​

Answers

Answered by amansharma264
42

EXPLANATION.

Quadratic equation.

⇒ 6x - 2/x = 1.

As we know that,

Factorizes the equation, we get.

⇒ 6x² - 2 = x.

⇒ 6x² - x - 2 = 0.

Factorizes the equation into middle term splits, we get.

⇒ 6x² - 4x + 3x - 2 = 0.

⇒ 2x(3x - 2) + 1(3x - 2) = 0.

⇒ (2x + 1)(3x - 2) = 0.

⇒ x = -1/2  and  x = 2/3.

                                                                                                                     

MORE INFORMATION.

Nature of the factors of the quadratic expression.

(1) = Real and different, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal or complex conjugate.

Answered by Anonymous
47

 {\pmb{\underline{\sf{ Required \ Solution... }}}} \\

We have to solve using Quadratic Equation as:-

 \colon\implies{\sf{ 6x - \dfrac{2}{x} = 1 }} \\ \\ \\ \colon\implies{\sf{ \dfrac{6x^2 - 2}{x} = 1 }} \\ \\ \\ \colon\implies{\sf{ 6x^2 - 2 = x }} \\ \\ \\ \colon\implies{\sf{ 6x^2 - 2 - x = 0 }} \\ \\ \\ \colon\implies{\sf{ 6x^2 - x - 2 = 0 \ \ \ \ \ (Arranging) }} \\ \\ \\ \colon\implies{\sf{ 6x^2 - (4-3)x-2 = 0 }} \\ \\ \\ \colon\implies{\sf{ 6x^2 - 4x + 3x - 2 = 0 }} \\ \\ \\ \colon\implies{\sf{ 2x(3x-2) +1(3x-2) = 0 }} \\ \\ \\ \colon\implies{\sf{ (3x-2)(2x+1) = 0 }} \\ \\ \\ \colon\implies{\underline{\boxed{\sf\red{ x = \dfrac{2}{3} \ and \ - \dfrac{1}{2} }}}} \\

 \\ \\ {\pmb{\underline{\sf{ More \ to \ Know... }}}}

 {\pmb{\underline{\sf{ As \ Explained \ Example... }}}} \\

 \bigstar The roots of the quadratic equation: x = (-b ± √D)/2a

  • where D = b² – 4ac

 \bigstar Nature of roots:

  • D > 0, roots are real and distinct (unequal)
  • D = 0, roots are real and equal (coincident)
  • D < 0, roots are imaginary and unequal

 \bigstar The roots (α + iβ), (α – iβ) are the conjugate pair of each other.

 \bigstar Sum and Product of roots: If α and β are the roots of a quadratic equation,

then

  • S = α+β= -b/a = coefficient of x/coefficient of x²
  • P = αβ = c/a = constant term/coefficient of x²

 \bigstar Quadratic equation in the form of roots: x² – (α+β)x + (αβ) = 0

Similar questions