Math, asked by kashishmarsh, 1 year ago


7 + 3 \sqrt{5 }  \div 3 +  \sqrt{5 }

Answers

Answered by Anonymous
13

\bf{\large{\underline{\underline{Answer:-}}}}

\boxed{\sf{ \dfrac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }=  \dfrac{3 +  \sqrt{5} }{2} }}

\bf{\large{\underline{\underline{Explanation:-}}}}

 \dfrac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }

To find the value rationize the denominator.

The Rationalising factor of 3 + √5 is 3 - √5. So, multiply numerator and denominator with rationalizing factor.

 \dfrac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} } \times  \dfrac{3 -  \sqrt{5} }{3 -  \sqrt{5} }

 =  \dfrac{7 + 3 \sqrt{5}(3 -  \sqrt{5})}{ {3}^{2} -  {( \sqrt{5})}^{2} }

[Since (x + y)(x - y) = x² - y² and here x = 3, y = √5]

 =  \dfrac{7(3 -  \sqrt{5}) + 3 \sqrt{5}(3 -  \sqrt{5}) }{9 - 5}

[Since 3² = 3 * 3 = 9, (√5)² = 5]

 =  \dfrac{21 - 7 \sqrt{5} + 9 \sqrt{5} - 3 \sqrt{5 \times 5}  }{4}

 =  \dfrac{21 + 2 \sqrt{5} - 3 \sqrt{ {5}^{2} }  }{4}

 =  \dfrac{21 + 2 \sqrt{5} - 3(5)}{4}

 =  \dfrac{21 + 2 \sqrt{5} - 15}{4}

 =  \dfrac{6 + 2 \sqrt{5} }{4}

It can be written as :-

 =  \dfrac{2(3 +  \sqrt{5})}{4}

 =  \dfrac{3 +  \sqrt{5} }{2}

\boxed{\bf{ \dfrac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }=  \dfrac{3 +  \sqrt{5} }{2} }}

Answered by taravk18
6
Hope it helps u
Thank u
Attachments:
Similar questions