Math, asked by aditya22310, 4 months ago


8 \times  {2}^{2x} + 4 \times  {2}^{x + 1}  = 1 +  {2}^{x}

Answers

Answered by mathdude500
1

\large\underline\blue{\bold{Given \:  Question  }}

 \pink{ \tt \: 8 \times {2}^{2x} + 4 \times {2}^{x + 1} = 1 + {2}^{x}}

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{a^m\times{a^n}\:=\:a^{m\:+\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\purple{\dfrac{a^m}{a^n}\:=\:a^{m\:-\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\orange{\dfrac{1}{x^n}\:=\:x^{-n}\:}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\color{peru}{(a^m)^n\:=\:a^{m\times{n}}\:}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\red{ {x}^{0} = 1}}}}} \\ \end{gathered}

\begin{gathered}(6)\:{\underline{\boxed{\bf{\blue{a^m \:  =  \: {a^n} \: \:then\: \: {m\: = \:n}\:}}}}} \\ \end{gathered}

\large\underline\purple{\bold{Solution :-  }}

 \tt \: :\implies \: 8 \times {2}^{2x} + 4 \times {2}^{x + 1} = 1 + {2}^{x}

 \tt \: :\implies \: 8 \times {2}^{2x} + 4 \times {2}^{x}  \times 2= 1 + {2}^{x}

 \tt \: :\implies \: 8 \times { ({2}^{x} )}^{2} + 8 \times {2}^{x} = 1 + {2}^{x}

 \blue{ \:  \tt \: :\implies \: Let \:  {2}^{x}  = y}

 \tt \: :\implies \:  {8y}^{2}  + 8y = 1 + y

 \tt \: :\implies \:  {8y}^{2}  + 8y - y - 1 = 0

 \tt \: :\implies \:  {8y}^{2}  + 7y - 1 = 0

 \tt \: :\implies \:  {8y}^{2}  + 8y - y - 1 = 0

 \tt \: :\implies \: 8y(y + 1) - 1(y + 1) = 0

 \tt \: :\implies \: (8y - 1)(y + 1) = 0

 \tt \: :\implies \: 8y - 1 = 0 \:  \: or \:  \: y  + 1 = 0

 \tt \: :\implies \: y =  \dfrac{1}{8}  \:  \: or \:  \: y \:  =  \:  -  \: 1

 \tt \: :\implies \:  {2}^{x}  = \dfrac{1}{8} \:  \:  or \:  \: {2}^{x}   =  - 1 \:  \pink{ \bf(rejected)}

 \tt \: :\implies \:  {2}^{x}  =  {2}^{ - 3}

 \large \boxed{ \pink{ \tt \: :\implies \: x \:  =  \:  -  \: 3}}

Verification :-

Consider LHS,

We have,

 \tt \: :\implies \: 8 \times {2}^{2x} + 4 \times {2}^{x + 1}

On substituting x = - 3, we get

 \tt \: :\implies \: 8 \times {2}^{2( - 3)} + 4 \times {2}^{ - 3 \: +  \: 1}

 \tt \: :\implies \: 8 \times  {(2)}^{ - 6}  + 4 \times  {(2)}^{ - 2}

 \tt \: :\implies \: \dfrac{8}{ {2}^{6} }  + \dfrac{4}{ {2}^{2} }

 \tt \: :\implies \: \dfrac{8}{64}  + \dfrac{4}{4}

 \tt \: :\implies \: \dfrac{1}{8}  + 1

 \tt \: :\implies \: \dfrac{9}{8}

Now,

Consider RHS,

We have,

 \tt \: :\implies \: 1 +  {2}^{x}

On substituting x = - 3, we get

 \tt \: :\implies \: 1 +  {(2)}^{ - 3}

 \tt \: :\implies \: 1 + \dfrac{1}{ {2}^{3} }

 \tt \: :\implies \: 1 + \dfrac{1}{8}

 \tt \: :\implies \: \dfrac{9}{8}

➦ LHS = RHS

\large{\boxed{\boxed{\bf{Hence, verified}}}}

Similar questions