Math, asked by karthickraj86, 1 year ago

.
 {8}^{x + 2 }  = {(16)}^{2x - 9}

Answers

Answered by AbhijithPrakash
9

Answer:

8^{x+2}=\left(16\right)^{2x-9}\quad :\quad x=\dfrac{42}{5}\quad \left(\mathrm{Decimal}:\quad x=8.4\right)

Step-by-step explanation:

8^{x+2}=\left(16\right)^{2x-9}

\mathrm{Convert\:}8^{x+2}\mathrm{\:to\:base\:}2

8^{x+2}=\left(2^3\right)^{x+2}

\left(2^3\right)^{x+2}=16^{2x-9}

\mathrm{Convert\:}16^{2x-9}\mathrm{\:to\:base\:}2

16^{2x-9}=\left(2^4\right)^{2x-9}

\left(2^3\right)^{x+2}=\left(2^4\right)^{2x-9}

\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}

\left(2^3\right)^{x+2}=2^{3\left(x+2\right)},\:\space\left(2^4\right)^{2x-9}=2^{4\left(2x-9\right)}

2^{3\left(x+2\right)}=2^{4\left(2x-9\right)}

\mathrm{If\:}a^{f\left(x\right)}=a^{g\left(x\right)}\mathrm{,\:then\:}f\left(x\right)=g\left(x\right)

3\left(x+2\right)=4\left(2x-9\right)

\mathrm{Solve\:}\:3\left(x+2\right)=4\left(2x-9\right)

\mathrm{Expand\:}3\left(x+2\right)

\mathrm{Apply\:the\:distributive\:law}:\quad \:a\left(b+c\right)=ab+ac

a=3,\:b=x,\:c=2

=3x+3\cdot \:2

\mathrm{Multiply\:the\:numbers:}\:3\cdot \:2=6

=3x+6

\mathrm{Expand\:}4\left(2x-9\right)

\mathrm{Apply\:the\:distributive\:law}:\quad \:a\left(b-c\right)=ab-ac

a=4,\:b=2x,\:c=9

=4\cdot \:2x-4\cdot \:9

\mathrm{Simplify}\:4\cdot \:2x-4\cdot \:9

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:2=8

=8x-4\cdot \:9

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:9=36

=8x-36

3x+6=8x-36

\mathrm{Subtract\:}6\mathrm{\:from\:both\:sides}

3x+6-6=8x-36-6

\mathrm{Simplify}

3x=8x-42

\mathrm{Subtract\:}8x\mathrm{\:from\:both\:sides}

3x-8x=8x-42-8x

\mathrm{Simplify}

-5x=-42

\mathrm{Divide\:both\:sides\:by\:}-5

\dfrac{-5x}{-5}=\dfrac{-42}{-5}

\mathrm{Simplify}

x=\dfrac{42}{5}

Attachments:
Similar questions