Math, asked by phunsukwangdu520, 7 months ago


8x { }^{2}  + 2 \sqrt{ 3} x - 9 = 0
solve​

Answers

Answered by Anonymous
1

Question:-

8 {x}^{2}  + 2 \sqrt{3} x - 9 = 0

Solution:-

We have equation:-

8 {x}^{2}  + 2 \sqrt{3} x - 9 = 0

Compare with:- ax² + bx² + c = 0

We get ,

 \rm \: a \:  =  \: 8 \:  \: or \:  \: b \:  = 2 \sqrt{3}  \:  \: or \:  \: \: c \:  =  \:  - 9

Using the quadratic formula

 \rm \: x =  \frac{ - b \pm \sqrt{D} }{2a}

 \rm \: D =  {b}^{2}  - 4ac

 \rm \: D = (2 \sqrt{3} ) {}^{2}  - 4 \times 8 \times  - 9

 \rm \: D = 12  + 288

 \rm \: D = 300

Using this formula

 \rm \: x =  \frac{ - b \pm \sqrt{D} }{2a}

We get

 \rm \:  x =  \frac{ - 2 \sqrt{3} \pm \sqrt{300}  }{2 \times 8}

 \rm \: x =  \frac{ - 2 \sqrt{3}  \pm10 \sqrt{3} }{16}

 \rm \: x \:  =  \frac{ - 2 \sqrt{3} + 10 \sqrt{3}  }{16}  \:  \:  \: and  \:  \: \: x =  \frac{ - 2 \sqrt{ 3} - 10 \sqrt{3}  }{16}

 \rm \: x =  \frac{8 \sqrt{3} }{16}  \:  \: and \:  \:  \: x =  \frac{ - 12 \sqrt{3} }{16}

 \color{red} \rm \: x =  \frac{ \sqrt{3} }{2}  \:  \:  \: and \:  \:  \:x =   \frac{ - 3 \sqrt{3} }{4}

Answered by InfiniteSoul
2

\sf{\underline{\boxed{\green{\large{\bold{ Question}}}}}}

  • solve the equation using formulae \sf 8x^2 + 2\sqrt {3x} - 9 = 0

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\green{\large{\bold{ Solution}}}}}}

\sf\implies 8x^2 + 2 \sqrt{3x}  - 9 = 0

⠀⠀⠀⠀⠀⠀⠀

  • compare the eq with \sf{\underline{\bold{ax^2 + bx + c = 0 }}}

⠀⠀⠀⠀⠀⠀⠀

☯ a = 8

☯ b = 2√3

☯ c = -9

⠀⠀⠀⠀⠀⠀⠀

now :-

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{x =  \dfrac{ - b \pm \sqrt D }{2a }}}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{ D =  b^2 - 4ac }}}}}}

⠀⠀⠀⠀⠀⠀⠀

  • finding value of D.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies D = b^2 - 4ac

\sf\implies D = (2\sqrt 3)^2 - 4 \times 8 \times -9

\sf\implies D = 12 + 288

\sf\implies D = 300

\sf{\underline{\boxed{\blue{\large{\bold{ D = 300}}}}}}

⠀⠀⠀⠀⠀⠀⠀

  • putting values in the eq.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies x = \dfrac{ -b \pm\sqrt D }{2a}

\sf\implies x = \dfrac{ -( 2\sqrt 3)  \pm\sqrt {300} }{2\times 8 }

\sf\implies x = \dfrac{ -( 2\sqrt 3)  \pm 10\sqrt {3} }{2\times 8 }

\sf\implies x = \dfrac{ -2\sqrt 3  \pm 10\sqrt 3 }{16}

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ -2 \sqrt 3 +  10\sqrt 3}{ 16 }

\implies x =  \dfrac {8\sqrt 3}{16}

\implies x = \dfrac{\sqrt 3}{2}

\sf{\underline{\boxed{\purple{\large{\bold{ x = \dfrac{\sqrt 3}{2} }}}}}}

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ -2 \sqrt 3 -  10\sqrt 3}{ 16 }

\implies x =  \dfrac {-12\sqrt 3}{16}

\implies x = \dfrac{-3\sqrt 3}{4}

\sf{\underline{\boxed{\purple{\large{\bold{ x = \dfrac{-3\sqrt 3}{4} }}}}}}

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\purple{\large{\bold{ x = \dfrac{\sqrt 3}{2} \: or \:  \dfrac{-3\sqrt 3}{4}}}}}}}

Similar questions