Math, asked by khushi5878, 1 year ago


8x { }^{2}  - 22x - 21 = 0 \: by \: using \: quadratic \: formula

Answers

Answered by shadowsabers03
2

     

p(x) = 8x² - 22x - 21 = 0

a = 8

b = -22

c = -21

⇒ b² - 4ac

⇒ (-22)² - (4 · 8 · -21)

⇒ 484 - (-672)

⇒ 484 + 672

⇒ 1156

\leadsto\ \boxed{\bold{x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}}} \\ \\ \leadsto\ \boxed{\bold{x=\frac{22\pm\sqrt{1156}}{16}}} \\ \\ \leadsto\ \boxed{\bold{x=\frac{22\pm34}{16}}} \\ \\ \leadsto\ \boxed{\bold{x=\textit{3.5}}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \boxed{OR}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \boxed{\bold{x=\textit{-0.75}}}

So the roots of p(x) are 3.5 and -0.75!!!

     

Thank you...

\mathfrak{\#adithyasajeevan}

   

Answered by Anonymous
1

(i) \: Solution :  \:  \:  \:  \: \:  We,  \: have \: 8x {}^{2}  - 22x - 21 = 0 \\ ⇒8x {}^{2}  - 28x + 6x - 21 = 0 \\ ⇒4x(2x - 7) + 3(2x - 7) = 0 \\ ⇒(2x - 7)(4x + 3) = 0 \\ ⇒2x - 7 = 0 \: or \: 4x + 3 = 0 \\ ⇒x =  \frac{7}{2} \: or \: x =  \frac{ - 3}{4}  \\ Thus,  \: x =  \frac{7}{2}  \: and \: x =  \:  \frac{ - 3}{4} are \: two \: roots \: of \: given \: equation.

Similar questions