Math, asked by mayuresh44, 28 days ago


( {a}^{2}  - 3a)( {a}^{2}  - 3a + 7) + 10
Factorise please brothers and sisters
Urgent!!!​

Answers

Answered by mathdude500
37

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:( {a}^{2} - 3a)( {a}^{2}   - 3a + 7) + 10

➢ Let assume that

 \red{\rm :\longmapsto\:{a}^{2} - 3a = x}

So, given expression can be rewritten as

\rm \:  =  \:\:x(x + 7) + 10

\rm \:  =  \:  \: {x}^{2} + 7x + 10

\rm \:  =  \:  \: {x}^{2} + 5x + 2x + 10

\rm \:  =  \:  \:x(x + 5) + 2(x + 5)

\rm \:  =  \:  \:(x + 5)(x + 2)

\rm \:  =  \:  \:( {a}^{2}  - 3a + 5)( {a}^{2}   - 3a+ 2)

\rm \:  =  \:  \:( {a}^{2}  - 3a + 5)( {a}^{2}   - 2a - a+ 2)

\rm \:  =  \:  \:( {a}^{2}  - 3a + 5)\bigg(a(a - 2) - 1(a - 2)\bigg)

\rm \:  =  \:  \:( {a}^{2}  - 3a + 5)\bigg((a - 2)(a - 1)\bigg)

\rm \:  =  \:  \:( {a}^{2}  - 3a + 5)(a - 2)(a - 1)

Hence,

\bf :\longmapsto\:( {a}^{2} - 3a)( {a}^{2}   - 3a + 7) + 10

\bf \:  =  \:  \:( {a}^{2}  - 3a + 5)(a - 2)(a - 1)

Additional Information :-

Let's solve one more problem of same type!!

Question :- Factorize the following :-

\rm :\longmapsto\:( {a}^{2} - 4a)( {a}^{2}   - 4a - 1) - 20

➢ Let assume that

 \red{\rm :\longmapsto\:{a}^{2} - 4a = x}

So, above expression can be rewritten as

\rm \:  =  \: \:x(x - 1) - 20

\rm \:  =  \: \: {x}^{2} - x - 20

\rm \:  =  \: \: {x}^{2} - 5x + 4x - 20

\rm \:  =  \:  \:x(x - 5) + 4(x - 5)

\rm \:  =  \:  \:(x - 5)(x + 4)

\rm \:  =  \:  \:( {a}^{2} - 4a- 5)( {a}^{2} - 4a + 4)

\rm \:  =  \:  \:( {a}^{2} - 5a + a- 5)( {a}^{2} - 2a - 2a + 4)

\rm \:  =  \:  \:\bigg(a(a - 5) + 1(a - 5)\bigg)\bigg(a(a - 2) - 2(a - 2)\bigg)

\rm \:  =  \:  \:(a - 5)(a + 1)(a - 2)(a - 2)

Hence,

\bf :\longmapsto\:( {a}^{2} - 4a)( {a}^{2}   - 4a - 1) - 20

\bf \:  =  \:  \:(a - 5)(a + 1)(a - 2)(a - 2)

Similar questions