Then, find the value of
(a+b+c)²-100 = ????
Answers
Given :-
- a^2+ab+b^2 = 25
- b^2+bc+c^2 = 49
- c^2+ca+a^2 = 64
To Find :-
- (a + b + c)² - 100 = ?
Formula used :-
- (x-y)(x² + y² + xy) = (x³ - y³)
- (x² - y²) = (x + y)(x - y)
- x⁴ + y⁴ + x²y² = (x² + y² + xy)(x² + y² - xy).
❁❁ Refer To Image Now .. ❁❁
Given : a² + ab + b² = 25 , b² + bc + c² = 49 , c² + ac + a² = 64
To find : (a + b + c) ² - 100
Solution:
Assumption a , b , c are integers
a² + ab + b² = 25 Eq1
b² + bc + c² = 49 Eq2
c² + ac + a² = 64 Eq3
Eq2 - Eq1
=> c² - a² + bc - ab = 49 - 25
=> (c + a)(c - a) + b(c - a) = 24
=> (c - a)(a + b + c) = 24
Eq3 - Eq1
=> (c - b)(a + b + c) = 39
Eq3 - Eq2
(a - b)(a + b + c) = 15
(c - a)(a + b + c) = 24
(c - b)(a + b + c) = 39
(a - b)(a + b + c) = 15
24 , 39 & 45
have common factor = ±3 or ±1
all three terms have a + b + c as common
=> a + b + c = ±3 or ±1
a + b + c = ±1 does not give integral values of a , b & c
a + b + c = ±3
a = 0 , b = 5 , c = -8 or a = 0 , b = - 5 c = 8
=> (a + b + c) ² - 100
= (±3)² - 100
= 9 - 100
= - 91
(a + b + c) ² - 100 = - 91
a = 0 , b = 5 , c = -8 or a = 0 , b = - 5 c = 8
Verification :
0 + 0 + 25 = 25 ,
25 - 40 + 64 = 49 ,
64 + 0 + 0 = 64
There is another solution (a + b + c) ² - 100 = 29 if a , b , c ≠ 0 and a , b , c ∈ R
Learn more:
(a+b+c)^2-100
brainly.in/question/15889846
a+b+c=3 a^2+b^2+c^2=6 1/a+1/b+1/c=1 find values of a , b and c
brainly.in/question/8061154
Write 5 examples of the form (a + b + c)² and expand them using the ...
brainly.in/question/11762738
https://brainly.in/question/15889771