Math, asked by maani8567, 10 months ago

a^{2} +b^{2}+c^2-ab-bc-ac=0 prove that a=b=c

Answers

Answered by purvi2950
0

Answer:

Janeiro y'all tan Ian. tbsp envious Isidora rhythmical

Answered by ronaldoChristiano
2

\huge\mathfrak\red{</strong><strong>Question</strong><strong>}

a^{2} +b^{2}+c^2-ab-bc-ac=0 prove that a=b=c

\huge\mathfrak\blue{answer}

─────────────────

here , a ² + b² + c² – ab – bc – ca = 0

we have to prove a = b= c

now, the solution .....

by , multiplying both sides with 2, we get the result.

2( a ²+ b² + c² – ab – bc – ca) = 0

⇒ 2a² + 2b²+ 2c² – 2ab – 2bc – 2ca = 0

⇒ (a² – 2ab + b²) + (b² – 2bc + c²) + (c² – 2ca + a²) = 0

⇒ (a –b)² + (b – c)² + (c – a)² = 0

hence, we can say ,(a - b)² = (b - c)² = (c - a)² = 0

therefore,

we can say, (a - b)² = 0 ---------- (1)

(b - c)² = 0 ---------- (2)

(c - a)² = 0 ---------- (3)

therefore, by Simplifying Equ. (1), we get

(a - b)² = 0

now Taking the Square Root on both sides, we have

a - b = 0

a = b ---------- (4)

similarly, Simplifying Equ. (2), we get

(b - c)² = 0

Taking Square Root on both sides, we have

b - c = 0

b = c ---------- (5)

again, Simplifying Equ. (3), we have

(c - a)² = 0

Taking Square Root on both sides, we have

c - a = 0

c = a ---------- (6)

now, From Equation No. (4), (5) & (6) , it is proved that

a = b = c

hence a= b= c , proved..........(ANS).

─────────────────

 &lt;!DOCTYPE html&gt; &lt;html&gt; &lt;svg width="100%" height="300px"&gt;\ \textless \ br /\ \textgreater \ &lt;g id="R1" transform="translate(250 250)"&gt; \ \textless \ br /\ \textgreater \ &lt;ellipse rx="100" ry="0" opacity=".3"&gt;\ \textless \ br /\ \textgreater \ &lt;animateTransform attributeName="transform" type="rotate" dur="7s" from="0" to="360" repeatCount="indefinite" /&gt;\ \textless \ br /\ \textgreater \ &lt;animate attributeName="cx" dur="8s" values="-20; 220; -20" repeatCount="indefinite" /&gt;\ \textless \ br /\ \textgreater \ &lt;animate attributeName="ry" dur="3s" values="10; 60; 10" repeatCount="indefinite" /&gt;\ \textless \ br /\ \textgreater \ &lt;/ellipse&gt;\ \textless \ br /\ \textgreater \ &lt;/g&gt;&lt;use xlink:href="#R1" transform="rotate(72 390 150)" /&gt;\ \textless \ br /\ \textgreater \ &lt;use xlink:href="#R1" transform="rotate(144 390 150)" /&gt;\ \textless \ br /\ \textgreater \ &lt;use xlink:href="#R1" transform="rotate(216 390 150)" /&gt;\ \textless \ br /\ \textgreater \ &lt;use xlink:href="#R1" transform="rotate(288 390 150)" /&gt;\ \textless \ br /\ \textgreater \ &lt;/svg&gt;&lt;/body&gt;&lt;/html&gt;

Similar questions