Math, asked by rahul105352, 1 month ago


 {a}^{2}  - (b - c) {}^{2}

Answers

Answered by Anonymous
37

Answer:

Answer:

a²-(b-c)² = (a+b-c)(a-b+c)

Explanation:

Factorising a²-(b-c)²

we know the algebraic identity:

x² - y² = (x + y) (x − y)

=[a+(b-c)][a-(b-c)]

= (a+b-c)(a-b+c)

Therefore,

a²-(b-c)2(a+b-c)(a-b+c)

Answered by Thelnsane
917

Answer:

\tt\large{\textbf{{{\color{navy}{ \: \: \: \: \: \:Ꭺŋ}}{\red{ѕw}}{\pink{єr♤࿐}}{\color{pink}{:}}}}}

\bf\large{\purple{╔════════♡︎═╗}}

 \tt\large{ \pink}{1. \:  \: expand \: the \: square : -  }

{ \tt{ \pink}{a}^{2} } - 1(b - c) {}^{2}

\tt{a}^{2}  - 1(b - c)(b - c)

 \tt\large{2. \:  \: distribute : -  }

 \tt {a}^{2}  - 1(b - c )( b  - c )

  \tt{a}^{2}  - 1(b(b -c ) - c(b -  c ))

 \tt{3. \: distribute : -  \: }

 \tt{a}^{2}  - 1(b(b - c) - c(b - c))

 \tt {a}^{2}  - 1( {b}^{2}  - bc - c(b - c))

 \tt\large{4. \: distribute : -  \: }

  \tt{a}^{2}  - 1( {b}^{2}  - bc - c(b - c))

 \tt {a}^{2}  - 1( {b}^{2}  - bc - bc +  {c}^{2} )

 \tt\large{5. \: combine \: like \: terms : -  \: }

 \tt {a}^{2}  - 1( {b}^{2}  - bc - bc +  {c}^{2} )

 \tt {a}^{2}  - 1( {b}^{2}  - 2bc +  {c}^{2} )

 \tt\large{6. \: distribute : - }

 \tt {a}^{2}  - 1( {b}^{2}  - 2bc +  {c}^{2} )

 \tt {a}^{2}  - 1 {b}^{2}  + 2bc - 1 {c}^{2}

 \tt\large{  \: solution   = }

 \tt {a}^{2}  - 1 {b}^{2}  + 2 - 1 {c}^{2}

\bf\large{\pink{╚═♡︎════════╝}}

Similar questions