Math, asked by annanithinsamuel, 9 months ago


(a + 22)
is a square number.
(a - 23)
is another square number. Find the value of a.

Attachments:

Answers

Answered by shadowsabers03
5

Let there exists two integers p and q such that,

\longrightarrow a+22=p^2

\longrightarrow a=p^2-22\quad\quad\dots(1)

And,

\longrightarrow a-23=q^2

\longrightarrow a=q^2+23\quad\quad\dots(2)

Subtracting (1) from (2),

\longrightarrow a-a=(p^2-22)-(q^2+23)

\longrightarrow 0=p^2-22-q^2-23

\longrightarrow 0=p^2-q^2-45

\longrightarrow p^2-q^2=45

\longrightarrow (p+q)(p-q)=45

Now we assume some possible values for p+q and p-q as cases.

Case 1:- Let p+q=45 and p-q=1.

Then we get,

\longrightarrow p=\dfrac{45+1}{2}=23

\longrightarrow q=\dfrac{45-1}{2}=22

Hence, from (2),

\longrightarrow a=22^2+23

\longrightarrow\underline{\underline{a=507}}

Case 2:- Let p+q=15 and p-q=3.

Then we get,

\longrightarrow p=\dfrac{15+3}{2}=9

\longrightarrow q=\dfrac{15-3}{2}=6

Hence, from (2),

\longrightarrow a=6^2+23

\longrightarrow\underline{\underline{a=59}}

Case 3:- Let p+q=9 and p-q=5.

Then we get,

\longrightarrow p=\dfrac{9+5}{2}=7

\longrightarrow q=\dfrac{9-5}{2}=2

Hence, from (2),

\longrightarrow a=2^2+23

\longrightarrow\underline{\underline{a=27}}

Hence the possible values of a are taken in a set as,

\longrightarrow\underline{\underline{a\in\{27,\ 59,\ 507\}}}

Let's verify for each.

For a=27,

\longrightarrow 27-23=4=2^2

\longrightarrow 27+22=49=7^2

For a=59,

\longrightarrow 59-23=36=6^2

\longrightarrow 59+22=81=9^2

For a=507,

\longrightarrow 507-23=484=22^2

\longrightarrow 507+22=529=23^2

Similar questions