Answers
Answered by
44
Correct Question :-
if a = 7 + 4√3 find the value of (√a - 1/√a) = ?
Sᴏʟᴜᴛɪᴏɴ :-
→ a = 7 + 4√3
Splitting the RHS Terms , we can write ,
→ a = 4 + 3 + 2 * 2 * √3
Or,
→ a = (2)² + (√3)² + 2 * 2 * √3
comparing it with a² + b² + 2ab = (a + b)² , we get,
→ a = (2 + √3)²
Square - Root Both sides Now, we get,
→ √a = (2 + √3).
Now,
→ 1/√a = 1/(2 + √3)
Rationalizing the RHS part Now,
→ 1/√a = 1/(2 + √3) * {(2 - √3) / (2 - √3)}
→ 1/√a = (2 - √3)/{(2 + √3)(2 - √3)}
using (a+b)(a-b) = a² - b² in Denominator,
→ 1/√a = (2 - √3) / (2² - √3²)
→ 1/√a = (2 - √3) / (4 - 3)
→ 1/√a = (2 - √3) .
Therefore,
→ (√a + 1/√a) = (2 + √3) + (2 - √3) = 4 (Ans.)
Answered by
44
If vale of then find the value of the
⠀⠀⠀
⠀
☯
⠀
Similar questions