Math, asked by vampire7, 1 year ago


a = 9 - 4 \sqrt{5} \:  then \: find \: value \: of \:  \sqrt{a}  \:  + 1 \div  \sqrt{a}

Attachments:

Answers

Answered by anonymous64
0
<b>Heya mate. (^_-). Solution below.
====================================

<u>Your Question -</u>

If a = 9 - 4√5, find the value of √a + (1/√a)

<u>Solution - </u>

a = 9 - 4 \sqrt{5}

 = > \sqrt{a} = \sqrt{9 - 4 \sqrt{5} }

Breaking 9 into 2 parts

 = > \sqrt{a} = \sqrt{4 + 5 - 4 \sqrt{5} }

 = > \sqrt{a} = \sqrt{( {2})^{2} + ({ \sqrt{5} )}^{2} - 2 \times 2 \times \sqrt{5} }

Now, using the formula
x² + y² - 2xy = (x+y)²

 = > \sqrt{a} = \sqrt{(2 - \sqrt{5})^{2} }

 = > \sqrt{a} = (2 - \sqrt{5}) ^{2 \times \frac{1}{2} }

 = > \sqrt{a} = 2 - \sqrt{5}

So, √a = 2 - √5

Now,

 \frac{1}{ \sqrt{a} } = \frac{1}{2 - \sqrt{5} }

Rationalising the denominator,

 = > \frac{1}{ \sqrt{a}} = \frac{1}{2 - \sqrt{5} } \times \frac{2 + \sqrt{5} }{2 + \sqrt{5} }

 = > \frac{1}{ \sqrt{a} } = \frac{1(2 + \sqrt{5}) }{( {2}^{2}) - ( \sqrt{5} ^{2} )}

 = > \frac{1}{ \sqrt{a} } = \frac{2 + \sqrt{5} }{4 - 5}

 = > \frac{1}{ \sqrt{a} } = \frac{2 + \sqrt{5} }{ - 1}

 = > \frac{1}{ \sqrt{a} } = \frac{ - ( - 2 - \sqrt{5}) }{ - (1)}

Cancelling the minus sign,

 = > \frac{1}{ \sqrt{a} } = - 2 - \sqrt{5}

So, (1/√a) = -2 - √5

Now,

√a + (1/√a)

= (2 - √5) + (-2 -√5)

= 2 - √5 - 2 - √5

= -2√5

<marquee>Hence, when a = 9 - 4√5, then √a + (1/√a) = -2√5</marquee>
====================================

Thank you. ;-)
Similar questions