Math, asked by AshokShilpa1432, 11 hours ago


(a + b ) {}^{2}
What is the answer​

Answers

Answered by llApolloll
13

  \huge \dagger \:  \pink{ \huge\frak {Answer}}

 \bf( a + b) ^{2}  =  {a}^{2} +  {b}^{2} + 2ab

  • Other Algebraic Identities :-

 \boxed{ \begin{array}{c} \rm(a - b)^{2}  =  {a}^{2} +  {b}^{2} - 2ab \\ \rm (a  +  b)(a - b) =  {a}^{2} - {b}^{2}  \\ \rm (a  +  b) ^{3} =  {a}^{3} +  {b}^{3} + 3 {a}^{2}b + 3a {b}^{2}  \\\rm(a - b) ^{3} =  {a}^{3} -  {b}^{3}  - 3 {a}^{2}b + 3a {b}^{2} \\ (x +  \dfrac{1}{x})^{2}  =  {x}^{2} +  \dfrac{1}{ {x}^{2} }  + 2   \\  \\ \: (x  -  \dfrac{1}{x})^{2}  =  {x}^{2} +  \dfrac{1}{ {x}^{2} }  - 2     \end{array}}

 \orange{ \huge \frak{Thankyou}}

Answered by Sɴɪɢᴅʜᴀ
25

Solution :

  • (a + b)² = a² + 2ab + b²

If we Prove it :

  • (a + b)² = a² + 2ab + b²

The Proof will be :

 \\  \ \mathfrak{ \pmb{L.H.S }}=  \tt(a + b)²  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \tt \:  \:  \:   \:    \:   \:   = (a + b)(a + b) \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt \: =  a(a + b ) + b(a + b) \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt \:  =  {a}^{2}  + ab + ab +  {b}^{2}  \\  \\   \:  \:  \:  \:  \tt \:  =  {a}^{2} + 2ab +  {b}^{2} \\  \\  \tt \:  = { \mathfrak{ \pmb{R.H.S}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \:  \: { \underline { \boxed{ \pmb{ \tt{Hence  \: Proved}}}}} \\  \\

✰ Extra Knowledge :

Some important identities :

  • (a – b)² = a² – 2ab + b²

  • (a² – b²) = (a + b)(a – b)

  • (x + a)(x + b) = x² + (a + b)x + ab

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a – b)³ = a³ – b³ – 3ab(a – b)

  • a³ + b³ = (a + b)(a² – ab + b²)

  • a³ – b³ = (a – b)(a² + ab + b²)
Similar questions