plz solved the problem....
Answers
Answered by
2
"(a+b+c) (b+c-a) (c+a-b) (a+b-c)
Several uses of number property arrangements allow the advantage of the Difference of Two Squares.
(a+b+c) (-a+b+c) (a-b+c) (a+b-c)
(a+b+c) ( a+b-c) (-a+b+c) (a-b+c)
( (a+b)+c) ( (a+b)-c) (-1)* ( (a-b)-c) ( (a-b)+c)
( (a+b)^2-c^2) (-1)* ( (a-b)^2-c^2)
(a^2+2ab+b^2-c^2) (-1) *(a^2-b^2-c^2)
(-1) * (a^2+2ab+b^2-c^2) (a^2-2ab +b^2-c^2)
(-1) * (a^2+b^2+2ab-c^2) (a^2+b^2-2ab-c^2)
(-1) * (a^4+a^2b^2+a^2b^2+b^4-a^2c^2-a^2c^2_4a^2b^2+c^4)
(-1).(a^4+b^4+c^4-2a^2b^2-2a^2c^2) "
Similar questions