Math, asked by ankitansu659, 9 months ago


a \cosθ- b\sinθ = c \\ then \: prove \: that \:  \\ a \sinθ + b \cosθ =  \sqrt{ {a }^{2} +  {b}^{2}  +  {c}^{2}  }  \\ if \: any \: body \: prove \: it \: i \: will \: mark \: them \: into \: brainlst \\
but it's my challenge to all nobody can prove can prove this ques ​

Answers

Answered by BrainlyPopularman
4

GIVEN :

  \\ \to \sf a \cos( \theta) - b \sin( \theta)  = c \\

TO PROVE :

  \\ \to  \sf a \sin\theta + b \cos\theta = \pm \sqrt{ {a }^{2} + {b}^{2} - {c}^{2} }\\

SOLUTION :

• Let's take a expression –

  \\ \implies \sf (a \cos \theta-b \sin \theta)^{2} +  (a \sin \theta + b \cos \theta)^{2}  =  {(a \cos (\theta)) }^{2}  +  {(b \sin( \theta))}^{2} - 2ab \sin( \theta)  \cos( \theta) + {(a \sin (\theta)) }^{2}  +  {(b \cos( \theta))}^{2}  +  2ab \sin( \theta)  \cos( \theta) \\

  \\ \implies \sf (c)^{2} +  (a \cos \theta + b \sin \theta)^{2}  =  {(a \cos (\theta)) }^{2}  +  {(b \sin( \theta))}^{2} + {(a \sin( \theta) )}^{2}  +   {(b \cos( \theta))}^{2} \\

  \\ \implies \sf (c)^{2} +  (a \sin \theta + b \cos \theta)^{2}  =  {a}^{2}( { \sin}^{2}  \theta +  { \cos}^{2} \theta ) +  {b}^{2}( { \cos}^{2} \theta +{ \sin}^{2}  \theta) \\

  \\ \implies \sf (c)^{2} +  (a \sin \theta + b \cos \theta)^{2}  =  {a}^{2} +  {b}^{2} \\

  \\ \implies \sf  (a \sin \theta + b \cos \theta)^{2}  =  {a}^{2} +  {b}^{2}  -  {c}^{2} \\

• Take square root on both sides –

  \\ \implies \sf  a \sin \theta + b \cos \theta  =  \pm \sqrt{ {a}^{2} +  {b}^{2}  -  {c}^{2}} \\

  \\  \:\:  \longrightarrow \:\: \large  { \boxed {{ \sf Hence \:  \: proved }}}\\

USED FORMULA :

  \\  \sf \: (1) \:  {(a + b)}^{2} =  {a}^{2}  +  {b}^{2} + 2ab  \\

  \\  \sf \: (2) \:  {(a  -  b)}^{2} =  {a}^{2}  +  {b}^{2}  -  2ab  \\

  \\  \sf \: (3) \:    { \sin }^{2} \theta  +  { \cos}^{2} \theta = 1  \\

Similar questions