Math, asked by haidr, 9 months ago


a +  \frac{4}{a }  =  - 2 \: then \: (a {3 - 8) = }^{?}

Answers

Answered by tahseen619
5

Answer:

0

Step-by-step explanation:

Given :

a + \frac{4}{a } = - 2 \\

To Find :

 {a}^{3}  - 8

Solution :

a + \frac{4}{a } = - 2 \\  \\   \frac{ {a}^{2} + 4 }{a}  =  - 2 \\  \\  {a}^{2}   + 4 =  - 2a \\  \\  {a}^{2}  + 2a + 4 = 0 \:  \:  \:  \:  \:  \:  \: .........i

Again,

 {a}^{3}  - 8 \\  \\ ( {a}^{}  - 2)( {a}^{2}  + 2a + 4) \\  \\ (a - 2) \times 0 \:  \:  \:  \:  \:  \:  \:</u></strong><strong><u>[</u></strong><strong><u> from \: i </u></strong><strong><u>]</u></strong><strong><u>\\  \\ 0

Using formula

- = (a - b)( + ab + b²)

Answered by Cosmique
4

Given:

a +  \frac{4}{a}  =  - 2

To find:

 {a}^{3}  - 8

Solution:

a +  \frac{4}{a}  =  - 2 \\  \\ (taking \: lcm \: in \: lhs) \\  \\  \frac{ {a}^{2} + 4 }{a}  =  - 2 \\  \\ (cross \: multiplying) \\  \\  {a}^{2}  + 4 =  - 2a \\  \\  {a}^{2}   + 2a + 4 = 0 ----equation(1)-\\  \\

we have to find

 {a}^{3}  - 8 \\  \\  =  {a}^{3}  -  {(2)}^{3}  \\  \\ (using \: identity  \\ \:  {x}^{3}  </em></strong><strong><em>-</em></strong><strong><em> {y}^{3}  = (x </em></strong><strong><em>-</em></strong><strong><em> </em></strong><strong><em>y)( {x}^{2}  +  {y}^{2}  </em></strong><strong><em>+</em></strong><strong><em> xy) \: we \: will \: get) \\  \\

(a - 2)( {a}^{2}  + 4 + 2a) \\  \\ (using \: equation \: (1) \: we \: will \: get) \\  \\</em></strong><strong><em>=</em></strong><strong><em> (a - 2)(0) \\  \\  = 0

Answer

your answer will be 0

I. e,

 {a}^{3}  - 8 = 0

Similar questions