Answers
Given : a√a + b√b = 183 ----- (1)
Given : a√b + b√a = 182 ------ (2)
Let √a = x (or) a = x^2
Let √b = y (or) b = y^2.
Now, Equation (1) can be written as:
⇒ x^2(x) + y^2(y) = 183
⇒ x^3 + y^3 = 183 ------ (3)
Now, Equation (2) can be written as:
⇒ x^2(y) + y^2(x) = 182
⇒ x^2y + y^2x = 182 ------ (4)
On multiplying (3) by both sides, we get
⇒ 3(x^2y + y^2x) = 3 * 182
⇒ 3xy(x + y) = 546. -----(5)
On adding (3) & (5), we get
⇒ x^3 + y^3 + 3xy(x + y) = 183 + 546
⇒ (x + y)^3 = 729
⇒ (x + y)^3 = (9)^3
⇒ x + y = 9 --------- (5)
Substitute (5) in (4), we get
⇒ x^2y + y^2x = 182
⇒ xy(x + y) = 182
⇒ xy = 182/9 ------ (6)
Now,
On squaring (5) on both sides, we get
⇒ (x + y)^2 = (9)^2
⇒ x^2 + y^2 + 2xy = 81
⇒ x^2 + y^2 + 2(182/9) = 81
⇒ x^2 + y^2 = 365/9.
Therefore, a + b = (365/9).
Hope it helps!