Math, asked by anirudh18966, 9 months ago


 {a}^{x}  = b \: \:  \:  \:   {b}^{y} = c \:  \:  \:  \:  \:  {c}^{z} = a \:  \:  \:  \:  \:  \: prove \: that \: xyz \:  = 1

Answers

Answered by DrNykterstein
2

 =  >  \:  \:  {a}^{x}  +  {b}^{y}  +  {c}^{z}  = a + b + c

On comparing,

 =  >  {a}^{x}  = a^{1} \\  \\  =  > x = 1

,

  =  >  \:  \: {b}^{y}  = b^{1} \\  \\  =  >  \:  \: y = 1

and,

 =  >  \:  \:  {c}^{z}  = c^{1} \\  \\  =  >  \:  \: z = 1

So,

x = 1; y = 1; z = 1;

=> x × y × z

=> 1 × 1 × 1

=> 1

Hence, Proved.

Answered by ItzEnchantedGirl
1

Given:-

 {a}^{x} = b \\ {b}^{y} = c \\ {c}^{z} = a

To Prove:-

xyz = 1

Solution:-

As,

 \\\: \bold{{a}^{x}  = b}

But Here a = c^{z}

\\ \: \bold{( { {c}^{z} })^{x}  = b}

And Now c = b^{y}

\\ \: \bold{( {( { {b}^{y} })^{z}) }^{x}  = b}

Now, \;\Large{b^{yzx} = b^{1}}

As The Bases are equal we can equate powers.

\;\Large{\sf{\pink{xyz = 1}}}

Hence Proved, xyz = 1

Similar questions