Math, asked by Teju222005, 1 year ago


 {a}^{x}  = b \\  {b}^{y}  = c \\  {c}^{z}  = z \\ prove \: xyz = 1

Answers

Answered by ShuchiRecites
1
Hello Mate!

 {a}^{xyz}  =  { ({a}^{x} })^{yz}  \\  {a}^{xyz}  =  { ({b}^{y} )}^{z}  \\  {a}^{xyz}  =  {c}^{z}  \\  {a}^{xyz}  = a \\ xyz = 1

Hence proved

☺!✌
Answered by ItzEnchantedGirl
1

Given:-

 {a}^{x} = b \\ {b}^{y} = c \\ {c}^{z} = a

To Prove:-

xyz = 1

Solution:-

As,

 \\ \: \bold{{a}^{x}  = b}

But Here a = c^{z}

\\  \: \bold{( { {c}^{z} })^{x}  = b}

And Now c = b^{y}

\\  \: \bold{( {( { {b}^{y} })^{z}) }^{x}  = b}

Now, \;\Large{b^{yzx} = b^{1}}

As The Bases are equal we can equate powers.

\;\Large{\sf{\pink{xyz = 1}}}

Hence Proved, xyz = 1

Similar questions