Math, asked by shalkipundir28, 3 days ago


 \alpha  {}^{3}  +  \beta  {}^{3}
If alpha and beta are roots of equation = ax2 + bx + c = 0 . find the value of alpha cube + beta cube ​

Answers

Answered by IlMYSTERIOUSIl
9

Given Question :-

α³ +β³

If alpha and beta are roots of equation = ax2 + bx + c = 0 . find the value of alpha cube + beta cube

Answer:-

Given :-

  • Alpha and Beta are roots of equation = ax2 + bx + c = 0

Find :-

  • value of alpha cube + beta cube (α³ + β³)

Solution :-

α and β are the zeroes of given polynomial . Hence ,

: \Longrightarrow \sf{\alpha+\beta =  -  \dfrac{b}{a} }

: \Longrightarrow \sf{\alpha\beta =   \dfrac{c}{a} }

Therefore ,

 : \Longrightarrow\sf{ \alpha ^ 3+ \beta^3=( \alpha+ \beta)^3-3\alpha\beta(\alpha+ \beta)}

 : \Longrightarrow\sf{\alpha^3+\beta^3=(\dfrac{-b}{a})^3 - \dfrac{3c}{a}( - \dfrac{b}{a})}

 : \Longrightarrow\sf{\alpha^3+\beta^3=\dfrac{-b^3}{a^3}  + \dfrac{3bc}{a^2}}

 : \Longrightarrow \sf{\alpha^3+\beta^3=\dfrac{-b^3+3abc}{a^3}}

Similar questions