Math, asked by dhankharsanvi, 1 month ago


 \alpha  \: and \:  \beta
are zeroes of the quadratic polynomial
 {x}^{2}  - (k + 6)x + 2(2k - 1)
Find the value of k if,
 \alpha  +  \beta  =  \frac{ \alpha  \beta }{2}

Answers

Answered by darshanradha3
82

Answer:

                   K = 7

Step-by-step explanation:

Given:

 

              x^2-(k+6)x+2(2k-1)

              Here roots are α and β

              For this quadratic equation sum of roots that is ;

              α + β = \frac{-b}{a}

              In given quadratic equation a = 1 , b = -(k + 6)

              Therefore : α + β = \frac{-(-(k+6))}{1}

              α + β = k + 6 ---------------> Equation 1

              For this quadratic equation multiplication of roots that is ;

               αβ = \frac{c}{a}

               In given quadratic equation a = 1 , c = 2(2k-1)

               Therefore :  αβ = \frac{2(2k -1)}{1}

               αβ = 2(2k - 1) ------------> Equation 2

               Given:

                                \alpha +\beta =\frac{\alpha \beta }{2}

             Substituting equation 1 and 2

              k+6=\frac{2(2k-1)}{2}

             k + 6 = 2k - 1

            6 + 1 = 2k - k

            k = 7

                                                   HOPE U UNDERSTOOD

                                                              TAHNK YOU :)

Answered by SparklingBoy
250

▪ Given :-

  •  \sf\alpha \: and \: \beta  \: are  \: zeroes \:  of  \\  \sf the \:  quadratic \:  polynomial  \\   \pmb{{x}^{2} - (k + 6)x + 2(2k - 1)}

  •  \pmb{ \alpha + \beta = \dfrac{ \alpha \beta }{2}}

-------------------------------

▪ To Find :-

  • The Value of k.

-------------------------------

▪ Concept To Mind :-

 \large\pmb{\mathfrak{For  \:\text{A} \: Qudratic \: Eq^n  \: of \: the \:Form}}

 \bf a {x}^{2}  + bx + c

 \large\pmb{Sum  \: of  \: Zeros  = - \dfrac{b}{a} } \\  \\ \large \pmb{ Product \:  of \:  Zeros =  \frac{c}{a} }

-------------------------------

▪ Solution :-

 \large \sf{\mathfrak{\text{H} ere ,}}

\pmb{Sum  \: of  \: Zeros   =  \alpha  +  \beta =( k + 6)}\\  \\ \pmb{ Product \:  of \:  Zeros  =  \alpha  \beta  = 2(2k  -  1)}

\large \bigstar \underline{ \pmb{ \mathfrak{ \text{A}ccording\:to\:the\:Given\:Condition}}}

 \alpha +   \beta  =  \dfrac{ \alpha  \beta }{2}  \\  \\  :\longmapsto k + 6 =  \frac{ \cancel2(2k - 1)}{ \cancel2}  \\  \\ :\longmapsto k + 6= 2k - 1  \\  \\   \LARGE \purple{ :\longmapsto  \underline {\boxed{{\bf k = 7} }}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-------------------------------

Similar questions