Math, asked by MoneyWatch, 8 months ago


 \alpha
and  \beta
are the zeroes of a Polynomial x²-4 \sqrt{3} x
+ 3 then find value of  \alpha + \beta - \alpha \beta

Answers

Answered by Anonymous
139

Given :-

\longrightarrow \sf {x}^{2} - 4 \sqrt{3} x + 3

To Find :-

\longrightarrow \sf Value \: of \: \alpha + \beta - \alpha \beta

Solution :-

\begin{gathered}\implies \sf \alpha + \beta = \frac{ - b}{a} \\ \\ \implies \sf \alpha + \beta = \frac{ - ( - 4 \sqrt{3}) }{1} \\ \\ \implies \sf \alpha + \beta = 4 \sqrt{3}\end{gathered}

____________________________

\begin{gathered}\implies \sf \alpha \beta = \frac{c}{a} \\ \\ \implies \sf \alpha \beta = \frac{3}{1} \\ \\ \implies \sf \alpha \beta = 3\end{gathered}

Now

\begin{gathered}\implies \alpha + \beta - \alpha \beta \\ \\ \implies\underline{\red{\boxed{ \sf 4 \sqrt{3} - 3}}}\end{gathered}

Similar questions