![@Moderators\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ @ Stars \ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ @Best Users \ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ \begin{gathered} \bf {Let \: I_n = \int { tan}^{n} \: x \: dx(n > 1)} \\ \\ \bf If \: I_4 + I_6 = a. {tan}^{5}x + b {x}^{5} + C\end{gathered}LetIn=∫tannxdx(n>1)IfI4+I6=a.tan5x+bx5+C \ \textless \ br /\ \textgreater \ Then Find Values of a & b \ \textless \ br /\ \textgreater \ @Moderators\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ @ Stars \ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ @Best Users \ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ \begin{gathered} \bf {Let \: I_n = \int { tan}^{n} \: x \: dx(n > 1)} \\ \\ \bf If \: I_4 + I_6 = a. {tan}^{5}x + b {x}^{5} + C\end{gathered}LetIn=∫tannxdx(n>1)IfI4+I6=a.tan5x+bx5+C \ \textless \ br /\ \textgreater \ Then Find Values of a & b \ \textless \ br /\ \textgreater \ ](https://tex.z-dn.net/?f=%40Moderators%5C++%5Ctextless+%5C+br+%2F%5C++%5Ctextgreater+%5C+%5C++%5Ctextless+%5C+br+%2F%5C++%5Ctextgreater+%5C+%40+Stars%C2%A0%5C++%5Ctextless+%5C+br+%2F%5C++%5Ctextgreater+%5C+%5C++%5Ctextless+%5C+br+%2F%5C++%5Ctextgreater+%5C+%40Best+Users%C2%A0%5C++%5Ctextless+%5C+br+%2F%5C++%5Ctextgreater+%5C+%5C++%5Ctextless+%5C+br+%2F%5C++%5Ctextgreater+%5C+%5Cbegin%7Bgathered%7D+%5Cbf+%7BLet+%5C%3A+I_n+%3D+%5Cint+%7B+tan%7D%5E%7Bn%7D+%5C%3A+x+%5C%3A+dx%28n+%26gt%3B+1%29%7D+%5C%5C+%5C%5C+%5Cbf+If+%5C%3A+I_4+%2B+I_6+%3D+a.+%7Btan%7D%5E%7B5%7Dx+%2B+b+%7Bx%7D%5E%7B5%7D+%2B+C%5Cend%7Bgathered%7DLetIn%E2%80%8B%3D%E2%88%ABtannxdx%28n%26gt%3B1%29IfI4%E2%80%8B%2BI6%E2%80%8B%3Da.tan5x%2Bbx5%2BC%E2%80%8B%C2%A0%5C++%5Ctextless+%5C+br+%2F%5C++%5Ctextgreater+%5C+Then+Find+Values+of+a+%26amp%3B+b%C2%A0%5C++%5Ctextless+%5C+br+%2F%5C++%5Ctextgreater+%5C+%E2%80%8B)
@Moderators
@ Stars
@Best Users
\begin{gathered} \bf {Let \: I_n = \int { tan}^{n} \: x \: dx(n > 1)} \\ \\ \bf If \: I_4 + I_6 = a. {tan}^{5}x + b {x}^{5} + C\end{gathered}
LetI
n
=∫tan
n
xdx(n>1)
IfI
4
+I
6
=a.tan
5
x+bx
5
+C
Then Find Values of a & b
Answers
Answered by
2
Answer:
8
Down vote
if you do not need the tabbing environment then you can overwrite the original definitions:
\documentclass{report}
\let\<\textless
\let\>\textgreater
\begin{document}
\<foo\> <foo>
\end{document}
enter image description here
With \usepackage[T1]{fontenc} there will be no difference!
Step-by-step explanation:
hope uts help u
Answered by
0
Answer:
@Moderators
@ Stars
@Best Users
\begin{gathered} \bf {Let \: I_n = \int { tan}^{n} \: x \: dx(n > 1)} \\ \\ \bf If \: I_4 + I_6 = a. {tan}^{5}x + b {x}^{5} + C\end{gathered}
LetI
n
=∫tan
n
xdx(n>1)
IfI
4
+I
6
=a.tan
5
x+bx
5
+C
Then Find Values of a & b
[/tex]
Similar questions
World Languages,
1 month ago
English,
1 month ago
Physics,
3 months ago
Political Science,
11 months ago
English,
11 months ago
English,
11 months ago