Math, asked by mahantabesra3, 16 days ago

যদি
ax {}^{2}  + bx + c = 0
দ্বিঘাত সমীকরণের বীজদ্বয়ের অনুপাত 1;r হয়, তবে,দেখাও যে
 \frac{(r + 1) {}^{2} }{r}  =  \frac{b {}^{2} }{ac}

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

Let the roots be  \alpha \:\: \& \:\: r\alpha

Then,

 \alpha  + r \alpha  =   - \frac{b}{a}  \\

And,

r { \alpha }^{2}  =  \frac{c}{a}  \\

 \implies \:  { \alpha }^{2}  =  \frac{c}{ar}  \\

And,

 \alpha (1 + r) = -   \frac{b}{a}  \\  \implies \:  \alpha  =  -  \frac{b}{a(r + 1)}

So,

 \bigg( -  \frac{b}{a(r + 1)}  \bigg)^{2} =  \frac{c}{ar}   \\

 \implies  \frac{b^{2} }{a ^{2} (r + 1)^{2} }   =  \frac{c}{ar}   \\

 \implies  \frac{b^{2} }{a (r + 1)^{2} }   =  \frac{c}{r}   \\

 \implies  \frac{b^{2} }{a  c}   =  \frac{(r + 1)^{2}}{r}   \\

Similar questions