Answers
Answered by
1
Question:
In the product BA×B3=57A, what are the respective positional values of B and A?
Answer:
BA×B3=57A
as B is in 10′ s place
⇒(10×B+A)×(10B+3)=(57×10)+A
⇒100B² +10(A×B)+30B+3A=570+A
⇒100B
2
+10(A×B)+30B+2A=570
⇒2A=570−100B² −10(A×B)−30B
⇒10/2A as 10 divides RHS
⇒A=5
or A=0
for A=0, 100B² +30B=570
⇒10B² +3B=50+7
sno B satisfies this as
3B=7
for A=5,100B² +80B+10=570
⇒10B² +8B=56
⇒5B² +4B=28=20+8
⇒B=2
∴B=2,A=5
Similar questions